Contents
2023
Volume: 11 Issue 5
23 Article(s)

Export citation format
OPTICAL METASURFACES: FUNDAMENTALS AND APPLICATIONS
Cascaded parametric amplification based on spatiotemporal modulations
Qianru Yang, Hao Hu, Xiaofeng Li, and Yu Luo
Active devices have drawn considerable attention owing to their powerful capabilities to manipulate electromagnetic waves. Fast and periodic modulation of material properties is one of the key obstacles to the practical implementation of active metamaterials and metasurfaces. In this study, to circumvent this limitation, we employ a cascaded phase-matching mechanism to amplify signals through spatiotemporal modulation of permittivity. Our results show that the energy of the amplified fundamental mode can be efficiently transferred to that of the high harmonic components if the spatiotemporal modulation travels at the same speed as the signals. This outstanding benefit enables a low-frequency pump to excite parametric amplification. The realization of cascaded parametric amplification is demonstrated by finite-difference time-domain (FDTD) simulations and analytical calculations based on the Bloch–Floquet theory. We find that the same lasing state can always be excited by an incidence at different harmonic frequencies. The spectral and temporal responses of the space-time modulated slab strongly depend on the modulation length, modulation strength, and modulation velocity. Furthermore, the cascaded parametric oscillators composed of a cavity formed by photonic crystals are presented. The lasing threshold is significantly reduced by the cavity resonance. Finally, the excitation of cascaded parametric amplification relying on the Si-waveguide platform is demonstrated. We believed that the proposed mechanism provides a promising opportunity for the practical implementation of intense amplification and coherent radiation based on active metamaterials.
Photonics Research
  • Publication Date: Apr. 21, 2023
  • Vol. 11, Issue 5, B125 (2023)
Reviews
Optoelectronics
Review on metal halide perovskite-based optoelectronic synapses
Xitong Hong, Xingqiang Liu, Lei Liao, and Xuming Zou
With the progress of both photonics and electronics, optoelectronic synapses are considered potential candidates to challenge the von Neumann bottleneck and the field of visual bionics in the era of big data. They are also regarded as the basis for integrated artificial neural networks (ANNs) owing to their flexible optoelectronic tunable properties such as high bandwidth, low power consumption, and high-density integration. Over the recent years, following the emergence of metal halide perovskite (MHP) materials possessing fascinating optoelectronic properties, novel MHP-based optoelectronic synaptic devices have been exploited for numerous applications ranging from artificial vision systems (AVSs) to neuromorphic computing. Herein, we briefly review the application prospects and current status of MHP-based optoelectronic synapses, discuss the basic synaptic behaviors capable of being implemented, and assess their feasibility to mimic biological synapses. Then, we focus on the two-terminal optoelectronic synaptic memristors and three-terminal transistor synaptic phototransistors (SPTs), the two essential apparatus structures for optoelectronic synapses, expounding their basic features and operating mechanisms. Finally, we summarize the recent applications of optoelectronic synapses in neuromorphic systems, including neuromorphic computing, high-order learning behaviors, and neuromorphic vision systems, outlining their potential opportunities and future development directions as neuromorphic devices in the field of artificial intelligence (AI).
Photonics Research
  • Publication Date: Apr. 28, 2023
  • Vol. 11, Issue 5, 787 (2023)
Research Articles
Editorials
Imaging Systems, Microscopy, and Displays
Structured illumination-based super-resolution live-cell quantitative FRET imaging
Zewei Luo, Ge Wu, Mengting Kong, Zhi Chen, Zhengfei Zhuang, Junchao Fan, and Tongsheng Chen
Förster resonance energy transfer (FRET) microscopy provides unique insight into the functionality of biological systems via imaging the spatiotemporal interactions and functional state of proteins. Distinguishing FRET signals from sub-diffraction regions requires super-resolution (SR) FRET imaging, yet is challenging to achieve from living cells. Here, we present an SR FRET method named SIM-FRET that combines SR structured illumination microscopy (SIM) imaging and acceptor sensitized emission FRET imaging for live-cell quantitative SR FRET imaging. Leveraging the robust co-localization prior of donor and accepter during FRET, we devised a mask filtering approach to mitigate the impact of SIM reconstruction artifacts on quantitative FRET analysis. Compared to wide-field FRET imaging, SIM-FRET provides nearly twofold spatial resolution enhancement of FRET imaging at sub-second timescales and maintains the advantages of quantitative FRET analysis in vivo. We validate the resolution enhancement and quantitative analysis fidelity of SIM-FRET signals in both simulated FRET models and live-cell FRET-standard construct samples. Our method reveals the intricate structure of FRET signals, which are commonly distorted in conventional wide-field FRET imaging.
Photonics Research
  • Publication Date: May. 01, 2023
  • Vol. 11, Issue 5, 887 (2023)
Integrated Optics
Photon propagation control on laser-written photonic chips enabled by composite waveguides
Ze-Zheng Li, Zhen-Nan Tian, Zhong-Tian Li, Yang Ouyang, Qi-Dai Chen, and Hong-Bo Sun
Femtosecond laser direct writing (FsLDW) three-dimensional (3D) photonic integrated circuits (PICs) can realize arbitrary arrangement of waveguide arrays and coupling devices. Thus, they are capable of directly constructing arbitrary Hamiltonians and performing specific computing tasks crucial in quantum simulation and computation. However, the propagation constant β is limited to a narrow range in single-mode waveguides by solely changing the processing parameters, which greatly hinders the design of FsLDW PICs. This study proposes a composite waveguide (CWG) method to increase the range of β, where a new single-mode composite waveguide comprises two adjacent circular waveguides. As a result, the photon propagation can be controlled and the variation range of β can be efficiently enlarged by approximately two times (Δβ∼36 cm-1). With the CWG method, we successfully realize the most compact FsLDW directional couplers with a 9 μm pitch in a straight-line form and achieve the reconstruction of the Hamiltonian of a Hermitian array. Thus, the study represents a step further toward the fine control of the coupling between waveguides and compact integration of FsLDW PICs.
Photonics Research
  • Publication Date: May. 01, 2023
  • Vol. 11, Issue 5, 829 (2023)
Lasers and Laser Optics
Widely tunable continuous-wave visible and mid-infrared light generation based on a dual-wavelength switchable and tunable random Raman fiber laser | Editors' Pick
Han Wu, Weizhe Wang, Bo Hu, Yang Li, Kan Tian, Rui Ma, Chunxiao Li, Jun Liu, Jiyong Yao, and Houkun Liang
Nonlinear frequency conversion of wavelength agile and high-power random fiber lasers can provide a promising way to generate continuous-wave (CW) visible and mid-infrared (MIR) light with unique properties such as the continuous modeless spectrum, low temporal/spatial coherence, and high temporal stability. Here, we report a dual-wavelength switchable and tunable random Raman fiber laser (RRFL) based on a phosphosilicate fiber that has two Raman gain peaks for the first time and demonstrate its superior capability to generate widely tunable CW visible and mid-infrared light via nonlinear frequency conversions. By using the combination of a tunable pump and two tunable gratings in Littrow configuration that can provide separated point feedback for the two Stokes wavelengths corresponding to silica- and phosphorus-related Raman peaks, the spectrum of an RRFL can be flexibly manipulated for the aim of nonlinear frequency conversions, including single-wavelength tunable emission at the 1.1 μm or 1.2 μm band for second-harmonic generation (SHG), dual-wavelength simultaneously tunable emission at the 1.1 μm and 1.2 μm bands for the sum-frequency generation (SFG), and dual-wavelength separation tunable emission for difference-frequency generation (DFG). As a result, with the combination of SHG and SFG in a periodically poled lithium niobate crystal array, we experimentally demonstrate the broadest tuning range (560–630 nm) of visible light generated from an RRFL, to the best of our knowledge. The tunable MIR light in the range of 10.7–12.3 μm is also demonstrated through DFG of an RRFL operating in separation tunable dual-wavelength emission mode in a BaGa4Se7 (BGSe) crystal, which is the first realization of >10 μm CW DFG in the BGSe crystal. We believe the developed dual-wavelength switchable and tunable RRFL can provide a new compact, robust, and cost-effective platform to realize broadly tunable light in both the visible and MIR regions, which can also find potential applications in imaging, sensing, and temporal ghost imaging in various spectral bands.
Photonics Research
  • Publication Date: May. 01, 2023
  • Vol. 11, Issue 5, 808 (2023)
Medical Optics and Biotechnology
Two-beam phase correlation spectroscopy: a label-free holographic method to quantify particle flow in biofluids | On the Cover
Lan Yu, Yu Wang, Yang Wang, Kequn Zhuo, Min Liu, G. Ulrich Nienhaus, and Peng Gao
We introduce two-beam phase correlation spectroscopy (2B-ΦCS) as a label-free technique to measure the dynamics of flowing particles; e.g., in vitro or in vivo blood flow. 2B-ΦCS combines phase imaging with correlation spectroscopy, using the intrinsic refractive index contrast of particles against the fluid background in correlation analysis. This method starts with the acquisition of a time series of phase images of flowing particles using partially coherent point-diffraction digital holographic microscopy. Then, phase fluctuations from two selected circular regions in the image series are correlated to determine the concentration and flow velocity of the particles by fitting pair correlation curves with a physical model. 2B-ΦCS is a facile procedure when using a microfluidic channel, as shown by the measurements on flowing yeast microparticles, polymethyl methacrylate microparticles, and diluted rat blood. In the latter experiment, the concentration and average diameter of rat blood cells were determined to be (4.7±1.9)×106 μL-1 and 4.6±0.4 μm, respectively. We further analyzed the flow of mainly red blood cells in the tail vessels of live zebrafish embryos. Arterial and venous flow velocities were measured as 290±110 μm s-1 and 120±50 μm s-1, respectively. We envision that our technique will find applications in imaging transparent organisms and other areas of the life sciences and biomedicine.
Photonics Research
  • Publication Date: Apr. 28, 2023
  • Vol. 11, Issue 5, 757 (2023)
Collagen fiber anisotropy characterization by polarized photoacoustic imaging for just-in-time quantitative evaluation of burn severity
Zhenhui Zhang, Wei Chen, Dandan Cui, Jie Mi, Gen Mu, Liming Nie, Sihua Yang, and Yujiao Shi
Just-in-time burn severity assessment plays a vital role in burn treatment and care. However, it is still difficult to quantitatively and promptly evaluate burn severity by existing medical imaging methods via initial burn depth measurement since burn wounds are usually dynamically developed. As an elastic skeleton of skin, the degree of conformational changes of collagen fibers caused by overheating can reflect the burn severity in a timelier manner. Herein, the polarized photoacoustic technique (PPAT) for just-in-time quantitative evaluation of burn severity via collagen fiber anisotropy assessment is proposed. First, phantom experiments demonstrate the ability of PPAT for deep imaging in a transport mean free path and accurately quantify changes in microstructural order by thermal damage. Then, the Pearson correlation coefficient of the PPAT in assessing burn severity is shown to be up to 0.95, validated by burn skin samples. The PPAT provides a just-in-time quantitative strategy for burn severity evaluation.
Photonics Research
  • Publication Date: May. 01, 2023
  • Vol. 11, Issue 5, 817 (2023)
Nanophotonics and Photonic Crystals
Self-design of arbitrary polarization-control waveplates via deep neural networks | Spotlight on Optics
Zhengchang Liu, Zhibo Dang, Zhixin Liu, Yu Li, Xiao He, Yuchen Dai, Yuxiang Chen, Pu Peng, and Zheyu Fang
The manipulation of polarization states beyond the optical limit presents advantages in various applications. Considerable progress has been made in the design of meta-waveplates for on-demand polarization transformation, realized by numerical simulations and parameter sweep methodologies. However, due to the limited freedom in these classical strategies, particular challenges arise from the emerging requirement for multiplex optical devices and multidimensional manipulation of light, which urge for a large number of different nanostructures with great polarization control capability. Here, we demonstrate a set of self-designed arbitrary wave plates with a high polarization conversion efficiency. We combine Bayesian optimization and deep neural networks to design perfect half- and quarter-waveplates based on metallic nanostructures, which experimentally demonstrate excellent polarization control functionalities with the conversion ratios of 85% and 90%. More broadly, we develop a comprehensive wave plate database consisting of various metallic nanostructures with high polarization conversion efficiency, accompanying a flexible tuning of phase shifts (0–2π) and group delays (0–10 fs), and construct an achromatic metalens based on this database. Owing to the versatility and excellent performance, our self-designed wave plates can promote the performance of multiplexed broadband metasurfaces and find potential applications in compact optical devices and polarization division multiplexing optical communications.
Photonics Research
  • Publication Date: Apr. 12, 2023
  • Vol. 11, Issue 5, 695 (2023)
Nonlinear Optics
Optical and Photonic Materials
Multiband camouflage design with thermal management
Lehong Huang, Haochuan Li, Zhiguo Li, Wenbo Zhang, Caiwen Ma, Chunmin Zhang, Yuxuan Wei, Liang Zhou, Xun Li, Zhiyuan Cheng, Xiaohui Guo, and Shiping Guo
Although the effective “stealth” of space vehicles is important, current camouflage designs are inadequate in meeting all application requirements. Here, a multilayer wavelength-selective emitter is demonstrated. It can realize visible light and dual-band mid-infrared camouflage with thermal control management in two application scenarios, with better effect and stronger radiation cooling capability, which can significantly improve the stealth and survivability of space vehicles in different environments. The selective emitter demonstrated in this paper has the advantages of simple structure, scalability, and ease of large-area fabrication, and has made a major breakthrough in driving multiband stealth technology from simulation research to physical verification and even practical application.
Photonics Research
  • Publication Date: May. 01, 2023
  • Vol. 11, Issue 5, 839 (2023)
Pseudospin-2 in photonic chiral borophene | Editors' Pick
Philip Menz, Haissam Hanafi, Daniel Leykam, Jörg Imbrock, and Cornelia Denz
Photonics Research
  • Publication Date: May. 01, 2023
  • Vol. 11, Issue 5, 869 (2023)
Optical Devices
Biosensing with free space whispering gallery mode microlasers
Angela Capocefalo, Silvia Gentilini, Lorenzo Barolo, Paola Baiocco, Claudio Conti, and Neda Ghofraniha
Highly accurate biosensors for few or single molecule detection play a central role in numerous key fields, such as healthcare and environmental monitoring. In the last decade, laser biosensors have been investigated as proofs of concept, and several technologies have been proposed. We here propose a demonstration of polymeric whispering gallery microlasers as biosensors for detecting small amounts of proteins, down to 400 pg. They have the advantage of working in free space without any need for waveguiding for input excitation or output signal detection. The photonic microsensors can be easily patterned on microscope slides and operate in air and solution. We estimate the limit of detection up to 148 nm/RIU for three different protein dispersions. In addition, the sensing ability of passive spherical resonators in the presence of dielectric nanoparticles that mimic proteins is described by massive ab initio numerical simulations.
Photonics Research
  • Publication Date: Apr. 25, 2023
  • Vol. 11, Issue 5, 732 (2023)
Electromagnetically induced transparency-like effect in a lithium niobate resonator via electronic control
Liu Yang, Yongyong Zhuang, Yifan Zhang, Yaojing Zhang, Shuangyou Zhang, Zhuo Xu, Pascal Del’Haye, and Xiaoyong Wei
In this study, we theoretically proposed a method to achieve an electromagnetically induced transparency (EIT)-like effect in a whispering gallery mode resonator (WGMR) and experimentally validated the method in a lithium niobate (LN) device. Benefitting from the electro-optic and inverse piezoelectric effects of the LN material, two modes of the LN WGMR that are close in frequency can be tuned at different tuning rates, resulting in EIT-like resonance lineshapes. By varying the electric field applied to the LN WGMR, the full dynamic of the EIT-like phenomenon can be precisely controlled. The experimental results agreed well with the calculations based on the coupled mode theory. Moreover, we observed a hysteresis resulting from the photorefractive effect of LN. We believe our proposed method and demonstrated devices offer a way to control an EIT-like effect, which could have potential applications in light storage, quantum information processing, and enhanced sensing techniques.
Photonics Research
  • Publication Date: Apr. 28, 2023
  • Vol. 11, Issue 5, 773 (2023)
Two-photon 3D printed spring-based Fabry–Pérot cavity resonator for acoustic wave detection and imaging
Heming Wei, Zhangli Wu, Kexuan Sun, Haiyan Zhang, Chen Wang, Kemin Wang, Tian Yang, Fufei Pang, Xiaobei Zhang, Tingyun Wang, and Sridhar Krishnaswamy
Optical fiber microresonators have attracted considerable interest for acoustic detection because of their compact size and high optical quality. Here, we have proposed, designed, and fabricated a spring-based Fabry–Pérot cavity microresonator for highly sensitive acoustic detection. We observed two resonator vibration modes: one relating to the spring vibration state and the other determined by the point-clamped circular plate vibration mode. We found that the vibration modes can be coupled and optimized by changing the structure size. The proposed resonator is directly 3D printed on an optical fiber tip through two-photon polymerization and is used for acoustic detection and imaging. The experiments show that the device exhibits a high sensitivity and low noise equivalent acoustic signal level of 2.39 mPa/Hz1/2 at 75 kHz that can detect weak acoustic waves, which can be used for underwater object imaging. The results demonstrate that the proposed work has great potential in acoustic detection and biomedical imaging applications.
Photonics Research
  • Publication Date: Apr. 28, 2023
  • Vol. 11, Issue 5, 780 (2023)
Hybrid metasurface using graphene/graphitic carbon nitride heterojunctions for ultrasensitive terahertz biosensors with tunable energy band structure
Haiyun Yao, Zhaoqing Sun, Lanju Liang, Xin Yan, Yaru Wang, Maosheng Yang, Xiaofei Hu, Ziqun Wang, Zhenhua Li, Meng Wang, Chuanxin Huang, Qili Yang, Zhongjun Tian, and Jianquan Yao
Integrating novel materials is critical for the ultrasensitive, multi-dimensional detection of biomolecules in the terahertz (THz) range. Few studies on THz biosensors have used semiconductive active layers with tunable energy band structures. In this study, we demonstrate three THz biosensors for detecting casein molecules based on the hybridization of the metasurface with graphitic carbon nitride, graphene, and heterojunction. We achieved low-concentration detection of casein molecules with a 3.54 ng/mL limit and multi-dimensional sensing by observing three degrees of variations (frequency shift, transmission difference, and phase difference). The favorable effect of casein on the conductivity of the semiconductive active layer can be used to explain the internal sensing mechanism. The incorporation of protein molecules changes the carrier concentration on the surface of the semiconductor active layer via the electrostatic doping effect as the concentration of positively charged casein grows, which alters the energy band structure and the conductivity of the active layer. The measured results indicate that any casein concentration can be distinguished directly by observing variations in resonance frequency, transmission value, and phase difference. With the heterojunction, the biosensor showed the highest response to the protein among the three biosensors. The Silvaco Atlas package was used to simulate the three samples’ energy band structure and carrier transport to demonstrate the benefits of the heterojunction for the sensor. The simulation results validated our proposed theoretical mechanism model. Our proposed biosensors could provide a novel approach for THz metasurface-based ultrasensitive biosensing technologies.
Photonics Research
  • Publication Date: May. 01, 2023
  • Vol. 11, Issue 5, 858 (2023)
Physical Optics
Nonreciprocal amplification transition in a topological photonic network
Mingsheng Tian, Fengxiao Sun, Kaiye Shi, Haitan Xu, Qiongyi He, and Wei Zhang
We studied the transport properties of a driven-dissipative photonic network, where multiple photonic cavities are coupled through a nonreciprocal bus with unidirectional transmission. For short-range coupling between the cavities, the occurrence of nonreciprocal amplification can be linked to a topological phase transition of the underlying dynamic Hamiltonian. However, for long-range coupling, we show that the correspondence between the nonreciprocal amplification transition and the topological phase transition breaks down as the transition conditions deviate significantly from each other. We found the exact transition condition for nonreciprocal amplification, supported by analytical calculation and numerical simulation. We also investigated the stability, the crossover from short- to long-range coupling, and the bandwidth of the nonreciprocal amplification. Our work has potential applications in signal transmission and amplification, and also paves the way to study other topological and non-Hermitian systems with long-range coupling and nontrivial boundary effects.
Photonics Research
  • Publication Date: May. 01, 2023
  • Vol. 11, Issue 5, 852 (2023)
Silicon Photonics
Highly reconfigurable silicon integrated microwave photonic filter towards next-generation wireless communication
Zihan Tao, Yuansheng Tao, Ming Jin, Jun Qin, Ruixuan Chen, Bitao Shen, Yichen Wu, Haowen Shu, Shaohua Yu, and Xingjun Wang
Integrated microwave photonic filters (IMPFs) are capable of offering unparalleled performances in terms of superb spectral fineness, broadband, and more importantly, the reconfigurability, which encounter the trend of the next-generation wireless communication. However, to achieve high reconfigurability, previous works should adopt complicated system structures and modulation formats, which put great pressure on power consumption and controlment, and, therefore, impede the massive deployment of IMPF. Here, we propose a streamlined architecture for a wideband and highly reconfigurable IMPF on the silicon photonics platform. For various practical filter responses, to avoid complex auxiliary devices and bias drift problems, a phase-modulated flexible sideband cancellation method is employed based on the intensity-consistent single-stage-adjustable cascaded-microring (ICSSA-CM). The IMPF exhibits an operation band extending to millimeter-wave (≥30 GHz), and other extraordinary performances including high spectral resolution of 220 MHz and large rejection ratio of 60 dB are obtained. Moreover, Gb/s-level RF wireless communications are demonstrated for the first time towards real-world scenarios. The proposed IMPF provides broadband flexible spectrum control capabilities, showing great potential in the next-generation wireless communication.
Photonics Research
  • Publication Date: Apr. 10, 2023
  • Vol. 11, Issue 5, 682 (2023)
Ultra-low-loss multi-layer 8 × 8 microring optical switch
Xin Li, Wei Gao, Liangjun Lu, Jianping Chen, and Linjie Zhou
Microring-based optical switches are promising for wavelength-selective switching with the merits of compact size and low power consumption. However, the large insertion loss, the high fabrication, and the temperature sensitivity hinder the scalability of silicon microring optical switch fabrics. In this paper, we utilize a three-dimensional (3D) microring-based optical switch element (SE) on a multi-layer Si3N4-on-SOI platform to realize high-performance large-scale optical switch fabrics. The 3D microring-based SE consists of a Si/Si3N4 waveguide overpass crossing in the bottom and the top layers, and Si3N4 dual-coupled microring resonators (MRRs) in the middle layer. The switch is calibration-free and has low insertion loss. With the 3D microring-based SEs, we implement an 8×8 crossbar optical switch fabric. As the resonance wavelengths of all SEs are well aligned, only one SE needs to be turned on in each routing path, which greatly reduces the complexity of the switch control. The optical transmission spectra show a box-like shape, with a passband width of ∼69 GHz and an average on-state loss of ∼0.37 dB. The chip has a record-low on-chip insertion loss of 0.52–2.66 dB. We also implement a non-duplicate polarization-diversity optical switch by using the bidirectional transmission characteristics of the crossbar architecture, which is highly favorable for practical applications. 100 Gb/s dual-polarization quadrature-phase-shift-keying (DP-QPSK) signal is transmitted through the switch without significant degradation. To the best of our knowledge, this is the first time that 3D MRRs have been used to build highly scalable polarization-diversity optical switch fabrics.
Photonics Research
  • Publication Date: Apr. 12, 2023
  • Vol. 11, Issue 5, 712 (2023)
Reconfigurable multichannel amplitude equalizer based on cascaded silicon photonic microrings
Changping Zhang, Shujun Liu, Hao Yan, Dajian Liu, Long Zhang, Huan Li, Yaocheng Shi, Liu Liu, and Daoxin Dai
A compact on-chip reconfigurable multichannel amplitude equalizer based on cascaded elliptical microrings is proposed and demonstrated experimentally. With the optimized structure of the elliptical microring with adiabatically varied radii/widths, the average excess loss for each channel in the initialized state is measured to be less than 0.5 dB, while the attenuation dynamic range can be over 20 dB. Flexible tunability through the overlapping of the resonance peaks of adjacent wavelength-channels enables even higher attenuation dynamic ranges up to 50 dB. Leveraging the thermo-optic effect and fine wavelength-tuning linearity, precise tuning of the resonance peak can be implemented, enabling dynamic power equalization of each wavelength-channel in wavelength-division-multiplexing (WDM) systems and optical frequency combs. The proposed architecture exhibits excellent scalability, which can facilitate the development of long-haul optical transport networks and high-capacity neuromorphic computing systems, while improving the overall performance of optical signals in WDM-related systems.
Photonics Research
  • Publication Date: Apr. 25, 2023
  • Vol. 11, Issue 5, 742 (2023)
Equalization of a 10 Gbps IMDD signal by a small silicon photonics time delayed neural network
Emiliano Staffoli, Mattia Mancinelli, Paolo Bettotti, and Lorenzo Pavesi
A small 4-channel time-delayed complex perceptron is used as a silicon photonic neural network (PNN) device to compensate for chromatic dispersion in optical fiber links. The PNN device is experimentally tested with non-return-to-zero optical signals at 10 Gbps after propagation through up to 125 km optical fiber link. During the learning phase, a separation-loss function is optimized in order to maximally separate the transmitted levels of 0s from the 1s, which implies an optimization of the bit-error-rate. Testing of the PNN device shows that the excess losses introduced by the PNN device are compensated by the gain in the transmitted signal equalization for a link longer than 100 km. The measured data are reproduced by a model that accounts for the optical link and the PNN device. This allows simulating the network performances for higher data rates, where the device shows improvement with respect to the benchmark both in terms of performance and ease of use.
Photonics Research
  • Publication Date: May. 01, 2023
  • Vol. 11, Issue 5, 878 (2023)
Surface Optics and Plasmonics
Directional surface plasmon polariton scattering by single low-index dielectric nanoparticles: simulation and experiment
Xuqing Sun, Hongyao Liu, Liwen Jiang, Ruxue Wei, Chang Wang, Xue Wang, Xiaojuan Sun, Fei Wang, Xinchao Lu, Andrey B. Evlyukhin, and Chengjun Huang
Directionally scattered surface plasmon polaritons (SPPs) promote the efficiency of plasmonic devices by limiting the energy within a given spatial domain, which is one of the key issues to plasmonic devices. Benefitting from the magnetic response induced in high-index dielectric nanoparticles, unidirectionally scattered SPPs have been achieved via interference between electric and magnetic resonances excited in the particles. Yet, as the magnetic response in low-index dielectric nanoparticles is too weak, the directionally scattered SPPs are hard to detect. In this work, we demonstrate forward scattered SPPs in single low-index polystyrene (PS) nanospheres. We numerically illustrate the excitation mechanism of plasmonic induced electric and magnetic multipole modes, as well as their contributions to forward SPP scattering of single PS nanospheres. We also simulate the SPP scattering field distribution obtaining a forward-to-backward scattering intensity ratio of 50.26:1 with 1 μm PS particle. Then the forward scattered SPPs are experimentally visualized by Fourier transforming the real-space plasmonic imaging to k-space imaging. The forward scattered SPPs from low-index dielectric nanoparticles pave the way for SPP direction manipulation by all types of nanomaterials.
Photonics Research
  • Publication Date: Apr. 28, 2023
  • Vol. 11, Issue 5, 765 (2023)

About the Cover

Two-beam phase correlation spectroscopy is a label-free technique to quantify the dynamics of flowing particles, such as red blood cells in vessels of live zebrafish, utilizing the intrinsic refractive index contrast of particles against the fluid background in correlation analysis. See Lan Yu et al., pp. 757-764