Contents 1 Issue (s), 2 Article (s)

Vol. 11, Iss.2—Feb.1, 2023 • pp: 137-149 Spec. pp:

Export citation format
Research ArticlesVol. 11, Iss.2-Feb..1,2023
Nonlinear Optics
Classical imaging with undetected photons using four-wave mixing in silicon core fibers
M. Huang, D. Wu, H. Ren, L. Shen, T. W. Hawkins, J. Ballato, U. J. Gibson, M. Beresna, R. Slavík, J. E. Sipe, M. Liscidini, and A. C. Peacock
Undetected-photon imaging allows for objects to be imaged in wavelength regions where traditional components are unavailable. Although first demonstrated using quantum sources, recent work has shown that the technique also holds with classical beams. To date, however, all the research in this area has exploited parametric down-conversion processes using bulk nonlinear crystals within free-space systems. Here, we demonstrate undetected-photon-based imaging using light generated via stimulated four-wave mixing within highly nonlinear silicon fiber waveguides. The silicon fibers have been tapered to have a core diameter of 915 nm to engineer the dispersion and reduce the insertion losses, allowing for tight mode confinement over extended lengths to achieve practical nonlinear conversion efficiencies (-30 dB) with modest pump powers (48 mW). Both amplitude and phase images are obtained using classically generated light, confirming the high degree of spatial and phase correlation of our system. The high powers (>10 nW) and long coherence lengths (>4 km) associated with our large fiber-based system result in high contrast and stable images.
Photonics Research
  • Publication Date: Jan. 10, 2023
  • Vol. 11, Issue 2, 137 (2023)
Silicon Photonics
16-channel photonic–electric co-designed silicon transmitter with ultra-low power consumption
Jingbo Shi, Ming Jin, Tao Yang, Haowen Shu, Fenghe Yang, Han Liu, Yuansheng Tao, Jiangrui Deng, Ruixuan Chen, Changhao Han, Nan Qi, and Xingjun Wang
A hybrid integrated 16-channel silicon transmitter based on co-designed photonic integrated circuits (PICs) and electrical chiplets is demonstrated. The driver in the 65 nm CMOS process employs the combination of a distributed architecture, two-tap feedforward equalization (FFE), and a push–pull output stage, exhibiting an estimated differential output swing of 4.0Vpp. The rms jitter of 2.0 ps is achieved at 50 Gb/s under nonreturn-to-zero on–off keying (NRZ-OOK) modulation. The PICs are fabricated on a standard silicon-on-insulator platform and consist of 16 parallel silicon dual-drive Mach–Zehnder modulators on a single chip. The chip-on-board co-packaged Si transmitter is constituted by the multichannel chiplets without any off-chip bias control, which significantly simplifies the system complexity. Experimentally, the open and clear optical eye diagrams of selected channels up to 50 Gb/s OOK with extinction ratios exceeding 3 dB are obtained without any digital signal processing. The power consumption of the Si transmitter with a high integration density featuring a throughput up to 800 Gb/s is only 5.35 pJ/bit, indicating a great potential for massively parallel terabit-scale optical interconnects for future hyperscale data centers and high-performance computing systems.
Photonics Research
  • Publication Date: Jan. 10, 2023
  • Vol. 11, Issue 2, 143 (2023)