Contents
2019
Volume: 7 Issue 2
16 Article(s)

Export citation format
Reviews
Optoelectronics
Vertical-cavity surface-emitting lasers for data communication and sensing
Anjin Liu, Philip Wolf, James A. Lott, and Dieter Bimberg
Vertical-cavity surface-emitting lasers (VCSELs) are the ideal optical sources for data communication and sensing. In data communication, large data rates combined with excellent energy efficiency and temperature stability have been achieved based on advanced device design and modulation formats. VCSELs are also promising sources for photonic integrated circuits due to their small footprint and low power consumption. Also, VCSELs are commonly used for a wide variety of applications in the consumer electronics market. These applications range from laser mice to three-dimensional (3D) sensing and imaging, including various 3D movement detections, such as gesture recognition or face recognition. Novel VCSEL types will include metastructures, exhibiting additional unique properties, of largest importance for next-generation data communication, sensing, and photonic integrated circuits.
Photonics Research
  • Publication Date: Jan. 09, 2019
  • Vol. 7, Issue 2, 121 (2019)
Silicon Photonics
Coupling strategies for silicon photonics integrated chips [Invited] | On the Cover
Riccardo Marchetti, Cosimo Lacava, Lee Carroll, Kamil Gradkowski, and Paolo Minzioni
Over the last 20 years, silicon photonics has revolutionized the field of integrated optics, providing a novel and powerful platform to build mass-producible optical circuits. One of the most attractive aspects of silicon photonics is its ability to provide extremely small optical components, whose typical dimensions are an order of magnitude smaller than those of optical fiber devices. This dimension difference makes the design of fiber-to-chip interfaces challenging and, over the years, has stimulated considerable technical and research efforts in the field. Fiber-to-silicon photonic chip interfaces can be broadly divided into two principle categories: in-plane and out-of-plane couplers. Devices falling into the first category typically offer relatively high coupling efficiency, broad coupling bandwidth (in wavelength), and low polarization dependence but require relatively complex fabrication and assembly procedures that are not directly compatible with wafer-scale testing. Conversely, out-of-plane coupling devices offer lower efficiency, narrower bandwidth, and are usually polarization dependent. However, they are often more compatible with high-volume fabrication and packaging processes and allow for on-wafer access to any part of the optical circuit. In this paper, we review the current state-of-the-art of optical couplers for photonic integrated circuits, aiming to give to the reader a comprehensive and broad view of the field, identifying advantages and disadvantages of each solution. As fiber-to-chip couplers are inherently related to packaging technologies and the co-design of optical packages has become essential, we also review the main solutions currently used to package and assemble optical fibers with silicon-photonic integrated circuits.
Photonics Research
  • Publication Date: Jan. 31, 2019
  • Vol. 7, Issue 2, 201 (2019)
Research Articles
Lasers and Laser Optics
High power and energy generation in a Nd:YAG single-crystal fiber laser at 1834  nm
Yaqi Cai, Bin Xu, Yunshan Zhang, Qingyu Tian, Xiaodong Xu, Qingsong Song, Dongzhen Li, Jun Xu, and Ivan Buchvarov
We report on a diode-end-pumped high-power and high-energy Nd:YAG single-crystal fiber laser at 1834 nm. Two 808 nm diodes injecting about 58 W pump power into the Nd:YAG fiber have generated 3.28 W continuous-wave and 1.66 W Cr:ZnSe-based passively Q-switched lasers. Slope efficiencies with respect to pump powers are 8.7% for the continuous-wave laser and 4.9% for the Q-switched laser. The extracted maximum pulse energy is about 266.9 μJ, and the corresponding maximum pulse peak power is 2.54 kW. These performances greatly surpass previous results regarding this specific laser emission because the laser gain medium in the form of fiber can significantly mitigate thermally induced power saturation thanks to its significantly reduced thermal lensing effect. Single-crystal fiber lasers show great potential for high average power, pulse energy, and peak power.
Photonics Research
  • Publication Date: Jan. 18, 2019
  • Vol. 7, Issue 2, 162 (2019)
Effective suppression of stimulated Raman scattering in half 10  kW tandem pumping fiber lasers using chirped and tilted fiber Bragg gratings
Meng Wang, Zefeng Wang, Le Liu, Qihao Hu, Hu Xiao, and Xiaojun Xu
The average power of fiber lasers has been scaled deeply into the kW regime in the past years. However, stimulated Raman scattering (SRS) is still a major factor limiting further power scaling. Here, we have demonstrated for the first time, to the best of our knowledge, the suppression of SRS in a half 10 kW tandem pumping fiber amplifier using chirped and tilted fiber Bragg gratings (CTFBGs). With specially self-designed and manufactured CTFBGs inserted between the seed laser and the amplifier stage, a maximum SRS suppression ratio of >15 dB in spectrum is observed with no reduction in laser efficiency. With one CTFBG, the effective output power is improved to 3.9 kW with a beam quality M2 factor of ~1.7 from <3.5 kW with an M2 factor of >2; with two CTFBGs, the effective laser power reaches 4.2 kW with an increasing ratio of 20% and an M2 factor of ~1.8, and further power improvement is limited by the power and performance of the 1018 nm pump sources. This work provides an effective SRS suppression method for high-power all-fiber lasers, which is useful for further power scaling of these systems.
Photonics Research
  • Publication Date: Jan. 23, 2019
  • Vol. 7, Issue 2, 167 (2019)
Ultrabroadband wavelength-swept source based on total mode-locking of an Yb:CaF2 laser
Maciej Kowalczyk, Tadeusz Martynkien, Paweł Mergo, Grzegorz Soboń, and Jarosław Sotor
We present an ultrabroadband, high-speed wavelength-swept source based on a self-modulated femtosecond oscillator. Photonic crystal fiber was pumped by a mode-locked Yb:CaF2 laser, resulting in a strong spectral broadening from 485 to 1800 nm. The pump laser cavity could be realigned in order to achieve total mode-locking of the longitudinal and transverse TEM00 and TEM01 electromagnetic modes. This led to spatial oscillations of the output beam, which induced modulation of the coupling efficiency to the fiber. Due to the fact that nonlinear spectral broadening was intensity dependent, this mechanism introduced wavelength sweeping at the fiber output. The sweeping rate could be adjusted between 7 and 21.5 MHz by changing the geometry of the pump cavity. By controlling the ratio of the transverse mode amplitudes, we were able to tune the sweeping bandwidth, eventually covering both the 1300 nm and 1700 nm bioimaging transparency windows. When compared with previously demonstrated wavelength-swept sources, our concept offers much broader tunability and higher speed. Moreover, it does not require an additional intensity modulator.
Photonics Research
  • Publication Date: Jan. 24, 2019
  • Vol. 7, Issue 2, 182 (2019)
Nonlinear Optics
Kelly sideband suppression and wavelength tuning of a conventional soliton in a Tm-doped hybrid mode-locked fiber laser with an all-fiber Lyot filter
Jianfeng Li, Yazhou Wang, Hongyu Luo, Yong Liu, Zhijun Yan, Zhongyuan Sun, and Lin Zhang
We demonstrate a stable conventional soliton in a Tm-doped hybrid mode-locked fiber laser by employing a homemade all-fiber Lyot filter (AFLF) and a single-wall carbon nanotube. The AFLF, designed by sandwiching a piece of polarization-maintained fiber (PMF) with two 45° tilted fiber gratings inscribed by a UV laser in PMF with a phase-mask scanning technique, shows large filter depth of ~9 dB and small insertion loss of ~0.8 dB. By optimizing the free spectral range of the AFLF, the Kelly sidebands of a conventional soliton centered at 1966.4 nm can be dramatically suppressed without impairing the main shape of the soliton spectrum. It gives the pulse duration of 1.18 ps and bandwidth of 3.8 nm. By adjusting the temperature of the PMF of the AFLF from 7°C to 60°C, wavelength tunable soliton pulses ranging from 1971.62 nm to 1952.63 nm are also obtained. The generated soliton pulses can be precisely tuned between 1971.62 nm and 1952.63 nm by controlling the temperature of the AFLF.
Photonics Research
  • Publication Date: Jan. 07, 2019
  • Vol. 7, Issue 2, 103 (2019)
Generation of coexisting high-energy pulses in a mode-locked all-fiber laser with a nonlinear multimodal interference technique
Guangwei Chen, Wenlei Li, Guomei Wang, Wenfu Zhang, Chao Zeng, and Wei Zhao
We demonstrate a passively mode-locked all-fiber laser incorporating a piece of graded-index multimode fiber as a mode-locking modulator based on a nonlinear multimodal interference technique, which generates two types of coexisting high-energy ultrashort pulses [i.e., the conventional soliton (CS) and the stretched pulse (SP)]. The CS with pulse energy as high as 0.38 nJ is obtained at the pump level of 130 mW. When the pump increases to 175 mW, the high-energy SP occurs at a suitable nonlinear phase bias and its pulse energy can reach 4 nJ at a 610 mW pump. The pulse durations of the generated CS and SP are 2.3 ps and 387 fs, respectively. The theory of nonlinear fiber optics, single-shot spectral measurement by the dispersive Fourier-transform technique, and simulation methods based on the Ginzburg–Landau equation are provided to characterize the laser physics and reveal the underlying principles of the generated CS and SP. A rogue wave, observed between the CS and SP regions, mirrors the laser physics behind the dynamics of generating a high-energy SP from a CS. The proposed all-fiber laser is versatile, cost-effective and easy to integrate, which provides a promising solution for high-energy pulse generation.
Photonics Research
  • Publication Date: Jan. 25, 2019
  • Vol. 7, Issue 2, 187 (2019)
Optoelectronics
Wide tunable laser based on electrically regulated bandwidth broadening in polymer-stabilized cholesteric liquid crystal
Hongbo Lu, Cheng Wei, Qiang Zhang, Miao Xu, Yunsheng Ding, Guobing Zhang, Jun Zhu, Kang Xie, Xiaojuan Zhang, Zhijia Hu, and Longzhen Qiu
Electrically responsive photonic crystals represent one of the most promising intelligent material candidates for technological applications in optoelectronics. In this research, dye-doped polymer-stabilized cholesteric liquid crystals (PSCLCs) with negative dielectric anisotropy were fabricated, and mirrorless lasing with an electrically tunable wavelength was successfully achieved. Unlike conventional liquid-crystal lasers, the proposed laser aided in tuning the emission wavelength through controlling the reflection bandwidth based on gradient pitch distribution. The principal advantage of the electrically controlled dye-doped PSCLC laser is that the electric field is applied parallel to the helical axis, which changes the pitch gradient instead of rotating the helix axis, thus keeping the heliconical structure intact during lasing. The broad tuning range (~110 nm) of PSCLC lasers, coupled with their stable emission performance, continuous tunability, and easy fabrication, leads to its numerous potential applications in intelligent optoelectronic devices, such as sensing, medicine, and display.
Photonics Research
  • Publication Date: Jan. 10, 2019
  • Vol. 7, Issue 2, 137 (2019)
Efficient InGaN-based yellow-light-emitting diodes
Fengyi Jiang, Jianli Zhang, Longquan Xu, Jie Ding, Guangxu Wang, Xiaoming Wu, Xiaolan Wang, Chunlan Mo, Zhijue Quan, Xing Guo, Changda Zheng, Shuan Pan, and Junlin Liu
Photonics Research
  • Publication Date: Jan. 14, 2019
  • Vol. 7, Issue 2, 144 (2019)
Silicon Photonics
Silicon-on-insulator-based microwave photonic filter with widely adjustable bandwidth
Lu Xu, Jie Hou, Haitao Tang, Yuan Yu, Yu Yu, Xuewen Shu, and Xinliang Zhang
We demonstrate a silicon-based microwave photonic filter (MPF) with flattop passband and adjustable bandwidth. The proposed MPF is realized by using a 10th-order microring resonator (MRR) and a photodetector, both of which are integrated on a photonic chip. The full width at half-maximum (FWHM) bandwidth of the optical filter achieved at the drop port of the 10th-order MRR is 21.6 GHz. The ripple of the passband is less than 0.3 dB, while the rejection ratio is 32 dB. By adjusting the deviation of the optical carrier wavelength from the center wavelength of the optical bandpass filter, the bandwidth of the MPF can be greatly changed. In the experiment, the FWHM bandwidth of the proposed MPF is tuned from 5.3 to 19.5 GHz, and the rejection ratio is higher than 30 dB.
Photonics Research
  • Publication Date: Jan. 08, 2019
  • Vol. 7, Issue 2, 110 (2019)
Ultralow-crosstalk, strictly non-blocking microring-based optical switch
Qixiang Cheng, Liang Yuan Dai, Nathan C. Abrams, Yu-Han Hung, Padraic E. Morrissey, Madeleine Glick, Peter O’Brien, and Keren Bergman
We report on the first monolithically integrated microring-based optical switch in the switch-and-select architecture. The switch fabric delivers strictly non-blocking connectivity while completely canceling the first-order crosstalk. The 4×4 switching circuit consists of eight silicon microring-based spatial (de-)multiplexers interconnected by a Si/SiN dual-layer crossing-free central shuffle. Analysis of the on-state and off-state power transfer functions reveals the extinction ratios of individual ring resonators exceeding 25 dB, leading to switch crosstalk suppression of up to over 50 dB in the switch-and-select topology. Optical paths are assessed, showing losses as low as 0.1 dB per off-resonance ring and 0.5 dB per on-resonance ring. Photonic switching is actuated with integrated micro-heaters to give an ~24 GHz passband. The fully packaged device is flip-chip bonded onto a printed circuit board breakout board with a UV-curved fiber array.
Photonics Research
  • Publication Date: Jan. 16, 2019
  • Vol. 7, Issue 2, 155 (2019)
Wideband adaptive microwave frequency identification using an integrated silicon photonic scanning filter
Xu Wang, Feng Zhou, Dingshan Gao, Yanxian Wei, Xi Xiao, Shaohua Yu, Jianji Dong, and Xinliang Zhang
Photonic-assisted microwave frequency identification with distinct features, including wide frequency coverage and fast tunability, has been conceived as a key technique for applications such as cognitive radio and dynamic spectrum access. The implementations based on compact integrated photonic chips have exhibited distinct advantages in footprint miniaturization, light weight, and low power consumption, in stark contrast with discrete optical-fiber-based realization. However, reported chip-based instantaneous frequency measurements can only operate at a single-tone input, which stringently limits their practical applications that require wideband identification capability in modern RF and microwave applications. In this article, we demonstrate, for the first time, a wideband, adaptive microwave frequency identification solution based on a silicon photonic integrated chip, enabling the identification of different types of microwave signals from 1 to 30 GHz, including single-frequency, multiple-frequency, chirped-frequency, and frequency-hopping microwave signals, and even their combinations. The key component is a high Q-factor scanning filter based on a silicon microring resonator, which is used to implement frequency-to-time mapping. This demonstration opens the door to a monolithic silicon platform that makes possible a wideband, adaptive, and high-speed signal identification subsystem with a high resolution and a low size, weight, and power (SWaP) for mobile and avionic applications.
Photonics Research
  • Publication Date: Jan. 24, 2019
  • Vol. 7, Issue 2, 172 (2019)
Hot-wire chemical vapor deposition low-loss hydrogenated amorphous silicon waveguides for silicon photonic devices
Swe Z. Oo, Antulio Tarazona, Ali Z. Khokhar, Rafidah Petra, Yohann Franz, Goran Z. Mashanovich, Graham T. Reed, Anna C. Peacock, and Harold M. H. Chong
Photonics Research
  • Publication Date: Jan. 30, 2019
  • Vol. 7, Issue 2, 193 (2019)
Increasing the bandwidth of slow light in fishbone-like grating waveguides
Ran Hao, Gaoyang Ye, Jianyao Jiao, and Erping Li
Photonics Research
  • Publication Date: Jan. 31, 2019
  • Vol. 7, Issue 2, 240 (2019)
Surface Optics and Plasmonics
Self-powered lead-free quantum dot plasmonic phototransistor with multi-wavelength response
Yu Yu, Yating Zhang, Lufan Jin, Zhiliang Chen, Yifan Li, Qingyan Li, Mingxuan Cao, Yongli Che, Haitao Dai, Junbo Yang, and Jianquan Yao
Because they possess excellent visible light absorption properties, lead-free colloidal copper-based chalcogenide quantum dots (QDs) have emerged in photoelectronic fields. By means of localized surface plasmonic resonance (LSPR), the absorption properties of QDs can be enhanced. In this paper, we fabricate a lead-free CuInSe2 QD field effect phototransistor (FEpT) by utilizing the LSPR enhancement of Au nanoparticles (NPs). The plasmonic FEpT demonstrates responsivity up to 2.7 μA·W 1 and a specific detectivity of 7×103 Jones at zero bias under illumination by a 532 nm laser, values that are enhanced by approximately 200% more than devices without Au NPs. Particularly, the FEpT exhibits a multi-wavelength response, which is photoresponsive to 405, 532, and 808 nm irradiations, and presents stability and reproducibility in the progress of ON–OFF cycles. Furthermore, the enhancement induced by Au NP LSPR can be interpreted by finite-difference time domain simulations. The low-cost solution-based process and excellent device performance strongly underscore lead-free CuInSe2 QDs as a promising material for self-powered photoelectronic applications, which can be further enhanced by Au NP LSPR.
Photonics Research
  • Publication Date: Jan. 16, 2019
  • Vol. 7, Issue 2, 149 (2019)