Journals
Advanced Photonics
Photonics Insights
Advanced Photonics Nexus
Photonics Research
Chinese Optics Letters
View All Journals
High Power Laser Science and Engineering
Articles
Optics
Physics
Geography
View All Subjects
Conferences
CIOP
HPLSE
View All Events
News
Search by keywords or author
Login
Registration
Login in
Registration
Search
Search
Articles
Journals
News
Advanced Search
Top Searches
laser
the
2D Materials
Transformation optics
Quantum Photonics
Small lasers
Home
About
Early Posting
Issue in Progress
Current Issue
Special Issues
All Issues
Journals >
Chinese Optics Letters
Contents
2022
Volume: 20 Issue 12
7 Article(s)
Select format
EndNote (RIS)
BibTex
Plain Text
Export citation format
Research Articles
Diffraction, Gratings, and Holography
Generating large topological charge Laguerre–Gaussian beam based on 4K phase-only spatial light modulator
Ruijian Li, Yuan Ren, Tong Liu, Chen Wang, Zhengliang Liu, Jie Zhao, Rusheng Sun, and Ziyang Wang
The resolution of the spatial light modulator (SLM) screen and the encoding algorithm of the computer-generated hologram are the primary limiting factors in the generation of large topological charge vortex beams. This paper attempts to solve these problems by improving both the hardware and the algorithm. Theoretically, to overcome the limitations of beam waist radius, the amplitude profile function of large topological charge Laguerre–Gaussian (LG) beam is properly improved. Then, an experimental system employing a 4K phase-only SLM is set up, and the LG beams with topological charge up to 1200 are successfully generated. Furthermore, we discuss the effect of different beam waist radii on the generation of LG beams. Additionally, the function of the LG beam is further improved to generate an LG beam with a topological charge as high as 1400. Our results set a new benchmark for generating large topological charge vortex beams, which can be widely used in precise measurement, sensing, and communication.
The resolution of the spatial light modulator (SLM) screen and the encoding algorithm of the computer-generated hologram are the primary limiting factors in the generation of large topological charge vortex beams. This paper attempts to solve these problems by improving both the hardware and the algorithm. Theoretically, to overcome the limitations of beam waist radius, the amplitude profile function of large topological charge Laguerre–Gaussian (LG) beam is properly improved. Then, an experimental system employing a 4K phase-only SLM is set up, and the LG beams with topological charge up to 1200 are successfully generated. Furthermore, we discuss the effect of different beam waist radii on the generation of LG beams. Additionally, the function of the LG beam is further improved to generate an LG beam with a topological charge as high as 1400. Our results set a new benchmark for generating large topological charge vortex beams, which can be widely used in precise measurement, sensing, and communication..
showLess
Chinese Optics Letters
Publication Date: Dec. 10, 2022
Vol. 20 Issue 12 120501 (2022)
Get PDF
View fulltext
Imaging Systems and Image Processing
End-to-end optimization of a diffractive optical element and aberration correction for integral imaging
Xiangyu Pei, Xunbo Yu, Xin Gao, Xinhui Xie, Yuedi Wang, Xinzhu Sang, and Binbin Yan
In the integral imaging light field display, the introduction of a diffractive optical element (DOE) can solve the problem of limited depth of field of the traditional lens. However, the strong aberration of the DOE significantly reduces the final display quality. Thus, herein, an end-to-end joint optimization method for optimizing DOE and aberration correction is proposed. The DOE model is established using thickness as the variable, and a deep learning network is built to preprocess the composite image loaded on the display panel. The simulation results show that the peak signal to noise ratio value of the optimized image increases by 8 dB, which confirms that the end-to-end joint optimization method can effectively reduce the aberration problem.
In the integral imaging light field display, the introduction of a diffractive optical element (DOE) can solve the problem of limited depth of field of the traditional lens. However, the strong aberration of the DOE significantly reduces the final display quality. Thus, herein, an end-to-end joint optimization method for optimizing DOE and aberration correction is proposed. The DOE model is established using thickness as the variable, and a deep learning network is built to preprocess the composite image loaded on the display panel. The simulation results show that the peak signal to noise ratio value of the optimized image increases by 8 dB, which confirms that the end-to-end joint optimization method can effectively reduce the aberration problem..
showLess
Chinese Optics Letters
Publication Date: Dec. 10, 2022
Vol. 20 Issue 12 121101 (2022)
Get PDF
View fulltext
Nanophotonics, Metamaterials, and Plasmonics
High-efficiency monolayer metallic metasurface for modulation of orbital angular momentum
Peijun Liu, Yanan Fu, Xi Xie, Changjun Min, Yuquan Zhang, and Xiaocong Yuan
The optical vortex beam has widely been studied and used because of its unique orbital angular momentum (OAM). To generate and control OAM in compact and integrated systems, many metallic metasurface devices have been proposed, however, most of them suffer from the low efficiency. Here, we propose and experimentally verify a high-efficiency monolayer metallic metasurface composed of semicircular nano-grooves distributed with detour phase. The metasurface can generate single or an array of OAM with spin-sensitive modulation and achieve the maximum efficiency of 60.2% in theory and 30.44% in experiment. This work has great potential in compact OAM detection and communication systems.
The optical vortex beam has widely been studied and used because of its unique orbital angular momentum (OAM). To generate and control OAM in compact and integrated systems, many metallic metasurface devices have been proposed, however, most of them suffer from the low efficiency. Here, we propose and experimentally verify a high-efficiency monolayer metallic metasurface composed of semicircular nano-grooves distributed with detour phase. The metasurface can generate single or an array of OAM with spin-sensitive modulation and achieve the maximum efficiency of 60.2% in theory and 30.44% in experiment. This work has great potential in compact OAM detection and communication systems..
showLess
Chinese Optics Letters
Publication Date: Dec. 10, 2022
Vol. 20 Issue 12 123601 (2022)
Get PDF
View fulltext
Optical Materials
Crystal growth and spectral properties of (Yb
0.15
Lu
0.85x
Y
0.85-0.85x
)
3
Al
5
O
12
single crystals
Ruifeng Tian, Mingyan Pan, Lu Zhang, and Hongji Qi
Four single crystals (Yb0.15Lu0.85xY0.85-0.85x)3Al5O12 (x = 0, 0.25, 0.5, 1) were grown by the Czochralski method. The correlation of the host atom Lu:Y ratios with the density and the luminescence properties were revealed. The density increases linearly with increasing of Lu3+ content, which will improve the gamma ray cut-off ability. The integrated intensity of the X-ray excited luminescence spectrum increases exponentially with the increasing Y:Lu ratio, while the decay time becomes even shorter with the increasing Lu3+ content. These results will provide a basis to balance the comprehensive properties to match different application requirements.
Four single crystals (Yb
0.15
Lu
0.85
x
Y
0.85-0.85
x
)
3
Al
5
O
12
(
x
= 0, 0.25, 0.5, 1) were grown by the Czochralski method. The correlation of the host atom Lu:Y ratios with the density and the luminescence properties were revealed. The density increases linearly with increasing of
Lu
3
+
content, which will improve the gamma ray cut-off ability. The integrated intensity of the X-ray excited luminescence spectrum increases exponentially with the increasing Y:Lu ratio, while the decay time becomes even shorter with the increasing
Lu
3
+
content. These results will provide a basis to balance the comprehensive properties to match different application requirements..
showLess
Chinese Optics Letters
Publication Date: Dec. 10, 2022
Vol. 20 Issue 12 121601 (2022)
Get PDF
View fulltext
Physical Optics
Symmetry detection of rotating patterns based on rotational Doppler effect of light
Fang Han, Weijie Wang, Tong Liu, Yuan Ren, Zhengliang Liu, and Song Qiu
We propose a method for detecting the symmetry of rotating patterns based on the rotational Doppler effect (RDE) of light. The basic mechanisms of the RDE are introduced, and the spiral harmonic distribution of rotating patterns is analyzed. By irradiating the rotating pattern using a superimposed optical vortex and analyzing the amplitude of the RDE signal, the spiral harmonic distribution of the pattern can be measured, and then its symmetry can be detected. We demonstrate this method experimentally by using patterns with different symmetries and shapes. As the method does not need to receive the scattered light completely and accurately, it promises potential application in detecting symmetrical rotating objects at a long distance.
We propose a method for detecting the symmetry of rotating patterns based on the rotational Doppler effect (RDE) of light. The basic mechanisms of the RDE are introduced, and the spiral harmonic distribution of rotating patterns is analyzed. By irradiating the rotating pattern using a superimposed optical vortex and analyzing the amplitude of the RDE signal, the spiral harmonic distribution of the pattern can be measured, and then its symmetry can be detected. We demonstrate this method experimentally by using patterns with different symmetries and shapes. As the method does not need to receive the scattered light completely and accurately, it promises potential application in detecting symmetrical rotating objects at a long distance..
showLess
Chinese Optics Letters
Publication Date: Dec. 10, 2022
Vol. 20 Issue 12 122601 (2022)
Get PDF
View fulltext
Quantum Optics and Quantum Information
Phase modulation polarization encoding module applied to one-to-many QKD network based on wavelength division multiplexing
Yi Zhang, Xiaojuan Qin, Jindong Wang, Yafei Yu, Zhengjun Wei, and Zhiming Zhang
The quantum key distribution (QKD) network is a promising solution for secure communications. In this paper, we proposed a polarization-independent phase-modulated polarization encoding module, and it can be combined with a dense wavelength division multiplexer (DWDM) to achieve multi-user QKD. We experimentally test the encoding module with a repetition rate of 62.5 MHz, and its average quantum bit error rate (QBER) is as low as 0.4%. Finally, we implement a principle verification test for simultaneous QKD for 1 to 2 users in 100 min, and the average QBER of two users under the transmission distance of 1 km and 5 km is kept below 0.8%. Due to the use of polarization encoding, the module can also realize scalable network architecture in free-space QKD systems in the future.
The quantum key distribution (QKD) network is a promising solution for secure communications. In this paper, we proposed a polarization-independent phase-modulated polarization encoding module, and it can be combined with a dense wavelength division multiplexer (DWDM) to achieve multi-user QKD. We experimentally test the encoding module with a repetition rate of 62.5 MHz, and its average quantum bit error rate (QBER) is as low as 0.4%. Finally, we implement a principle verification test for simultaneous QKD for 1 to 2 users in 100 min, and the average QBER of two users under the transmission distance of 1 km and 5 km is kept below 0.8%. Due to the use of polarization encoding, the module can also realize scalable network architecture in free-space QKD systems in the future..
showLess
Chinese Optics Letters
Publication Date: Dec. 10, 2022
Vol. 20 Issue 12 122701 (2022)
Get PDF
View fulltext
Fabrication, testing, and assembly of high-finesse optical fiber microcavity for molecule cavity QED experiment
Yuhao Pan, Li Li, Xiaolong Zhou, Dongyu Huang, Zemin Shen, Jian Wang, Chuanfeng Li, and Guangcan Guo
The ultracold molecule is a promising candidate for versatile quantum tasks due to its long-range interaction and rich internal rovibrational states. With the help of the cavity quantum electrodynamics (QED) effects, an optical cavity can be employed to increase the efficiency of the formation of the photoassociated molecules and offers a non-demolition detection of the internal states of molecules. Here, we demonstrate the production of the high-finesse optical fiber microcavity for the Rb2 molecule cavity QED experiment, which includes the fabrication of fiber-based cavity mirrors, testing, and the assembly of ultra-high vacuum-compatible optical fiber microcavity. The optical fiber microcavity offers high cooperativity between cavity mode and ultracold molecule and paves the way for the study of molecule cavity QED experimental research.
The ultracold molecule is a promising candidate for versatile quantum tasks due to its long-range interaction and rich internal rovibrational states. With the help of the cavity quantum electrodynamics (QED) effects, an optical cavity can be employed to increase the efficiency of the formation of the photoassociated molecules and offers a non-demolition detection of the internal states of molecules. Here, we demonstrate the production of the high-finesse optical fiber microcavity for the
Rb
2
molecule cavity QED experiment, which includes the fabrication of fiber-based cavity mirrors, testing, and the assembly of ultra-high vacuum-compatible optical fiber microcavity. The optical fiber microcavity offers high cooperativity between cavity mode and ultracold molecule and paves the way for the study of molecule cavity QED experimental research..
showLess
Chinese Optics Letters
Publication Date: Dec. 10, 2022
Vol. 20 Issue 12 122702 (2022)
Get PDF
View fulltext
Email Alert
Submit a Paper
Research Articles
Diffraction, Gratings, and Holography
Imaging Systems and Image Processing
Nanophotonics, Metamaterials, and Plasmonics
Optical Materials
Physical Optics
Quantum Optics and Quantum Information