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In the integral imaging light field display, the introduction of a diffractive optical element (DOE) can solve the problem of
limited depth of field of the traditional lens. However, the strong aberration of the DOE significantly reduces the final display
quality. Thus, herein, an end-to-end joint optimization method for optimizing DOE and aberration correction is proposed. The
DOE model is established using thickness as the variable, and a deep learning network is built to preprocess the composite
image loaded on the display panel. The simulation results show that the peak signal to noise ratio value of the optimized
image increases by 8 dB, which confirms that the end-to-end joint optimization method can effectively reduce the aberra-
tion problem.
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1. Introduction

Three-dimensional (3D) display technology is capable of pro-
viding real and natural 3D perception, and, consequently,
various efforts have been made to advance this technology
further[1–5]. Light field display, which is considered as the most
promising 3D display technology, can reconstruct the real light
field distribution of a real 3D scene[6–9]. Integral imaging (II), a
3D display method that can realize full parallax and true color,
and provide depth information, was first proposed, to the best of
our knowledge, by Lippmann in 1908[10]. The II technology is a
kind of 3D light field display technology with broad commercial
prospects. The currently used II technology consists of two proc-
esses: acquisition and reproduction. In the acquisition stage, a
lens array (LA) and an electronic sensor capture the information
from different angles of the 3D scene and form an element image
array (EIA). In the optical reproduction process, the LA with the
same parameters is used to project the EIA onto a holographic
function screen (HFS) to reproduce the original 3D scene.
Despite numerous advantages, the widespread application of

the II method is limited because of several factors such as low
viewing resolution, narrow viewing angle, and shallow depth
of field (DOF)[11–16]. To improve the quality of 3D scene
reconstruction, various studies on improving the DOF[12] as well
as the lateral resolution[17–20] have been conducted to date.
Accordingly, the previous studies can be divided into two parts:
(i) design optimization of the LA to improve its optical

performance and (ii) parallax images optimization algorithm to
enable the synthetic image (SI) to reconstruct the original 3D
scene with a higher accuracy. However, traditional lenses exhibit
small DOF owing to their inherent optical characteristics, which
significantly limit the content of the 3D scene that can be ren-
dered. By introducing diffractive optical elements (DOEs)[21–25],
which exhibit the advantages of compact shapes, large and flex-
ible design spaces, and relatively good off-axis imaging perfor-
mance, the problem of limited DOF can be solved, and the
complexity of the optics can be simplified. Although DOEs have
numerous advantages, they exhibit strong aberration, resulting
in a final display of very poor quality. The resounding success of
deep learning in image processing, along with the advent of
detailed computational imaging studies, in recent years has
allowed a complete transfer of the aberration correction from
the optics stage to the post-processing algorithms[26–31].
In this paper, an end-to-end joint optimization method for

optical components and image input sources is proposed. In this
method, first, a DOE model is established in the form of thick-
ness variables and combined with the wave optics imaging
model to derive the light intensity distribution of the point light
source passing through the element at the imaging plane.
Second, the deep learning network is employed to pre-correct
the input image, and the derived light intensity distribution is
subsequently used to simulate the display image of the pre-
corrected image on the imaging surface, through the DOE.
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Finally, the element images (EIs) in the SI are used as the train-
ing dataset, and the stochastic gradient method is used to jointly
optimize the aforementioned two parts. In summary, when
designing the surface parameters of the DOE, the deep learning
network is used to pre-correct the EIA to overcome the aberra-
tion problem. Because the light intensity distribution formed at
different positions on the input plane is different, the processing
method of dividingmultiple fields of view—the images in differ-
ent fields of view are convoluted with the corresponding point
spread function (PSF) to simulate the display image of the pre-
corrected image at the imaging plane after passing through the
DOE—was adopted in this study. The experimental results
showed that by using this method the surface parameters of
the DOE can be optimized, which effectively mitigates the aber-
ration problem and aids in achieving a highly accurate display
result of the original image.

2. End-to-End Optimization Method

The proposed end-to-end optimization of the DOE and aberra-
tion correction consists of three steps: (i) input image pre-
correction stage, (ii) pre-corrected image subfield convolution
stage, and (iii) loss calculation stage, as shown in Fig. 1(b).
Figure 1(a) shows the information acquisition stage in the II dis-
play method. The camera array collects information from differ-
ent angles of the 3D scene and encodes it into an SI, which is
composed of an EIA. The EIA is used as the training dataset,
and each EI is used as the input source to enter the closed-loop
process of themethod shown in Fig. 1(b). Then, the trained DOE
is repeatedly arranged to form a diffractive LA, and the trained
pre-correction EI (PCEI) is loaded on the display panel, as
shown in Fig. 1(c). In the input image pre-correction stage, the
input EI (IEI) passed through the deep learning pre-correction
network to obtain the PCEI. Next, the PCEI enters as the input
to the pre-corrected image subfield convolution stage, where

the input image is divided into multiple regions, and each region
image is convolved with its corresponding PSF convolution
kernel to simulate the final display EI (DEI). Finally, by calcu-
lating the loss value between the DEI and the IEI, the sur-
face parameters of the DOE and PCEI are obtained via back
propagation.

2.1. Image display model

The ideal optical system differs significantly from the actual
optical system. After passing through the actual optical system,
the light emitted from an object point in the object space does
not converge to a point in the image space; instead, it forms a
diffused spot, as shown in Fig. 2. The size of the diffused spot
is governed by the aberration of the system. In wave optics
theory, ideally, the spherical wave emitted by an object point
remains a spherical wave after passing through the optical sys-
tem. Because of diffraction, the ideal image of an object point is a
complicated Airy disk. However, in the actual optical system,
because of aberration, the wave surface formed by the optical
system does not remain a spherical surface, but exhibits a certain
wave phase difference. As a result of aberration, the original
input image (OII), after passing through the optical system,
becomes distorted, resulting in a different display image.
Mathematically, the point light source can be represented by
the δ function (point pulse). For an optical system, the light field
intensity distribution of the point imaged by the point light
source is called the PSF. The image formed by the optical system
is a result of the convolution of the object image and the PSF of
each point. To simulate the display results, we derive a wave-
based image display model, which incorporates the diffrac-
tion-related effects on the display. The derived image display
model is based on Fourier optics, and we have effectively inte-
grated it into the workflow of the deep learning tools.
To derive the PSF of an optical element, we model the spheri-

cal wave emitted by the point light source on a liquid crystal dis-
play (LCD) plane and then calculate the wave field expression
when it passes through the DOE and subsequently reaches
the HFS.
As shown in Fig. 3, the plane where the LCD located is

described by a 2D coordinate system XO1Y , on which a point
light source, with an initial amplitude and initial phase of A0

and φ0, respectively, reaches the left surface of the DOE

Fig. 1. Overall workflow diagram of this experiment: (a) parallax image acquis-
ition and synthesis; (b) proposed end-to-end optimization method workflow;
and (c) optical reconstruction. Fig. 2. Imaging process of an actual optical system.
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(the plane described by the 2D coordinate system ηO2ξ). Based
on wave optics theory, the wave expression of the point light
source on the left surface of the DOE is given by (assuming
φ0 = 0)

E�η, ξ� = A�η, ξ�eiφ�η, ξ�

=
A0

��η − x�2 � �ξ − y�2 � z20�1=2
× expfik��η − x�2 � �ξ − y�2 � z20�1=2g, (1)

where k = 2π=λ (λ is the wavelength of the light wave) is the
wave number.
For a single refractive or DOE such as a thin lens, the delay of

the wave field phase is proportional to the thickness t at the cor-
responding position, and the amplitude of the wave field shows
negligible changes, i.e.,

Δφ =
2πΔn
λ

t�η, ξ�, (2)

where λ is the wavelength, and Δn is the refractive index differ-
ence between air and the optical element material.
The wave field E�η, ξ�, with an amplitude of A�η, ξ� and a

phase of φ�η, ξ�, is incident on the optical element, and, after
passing through the element, it changes to

E 0�η, ξ� = A 0�η, ξ�eiφ 0�η, ξ� = A�η, ξ� exp�i�φ�η, ξ� � Δφ��: (3)

As shown in Fig. 3, the wave field E 0�η, ξ� reaches theHFS (the
plane is described by the 2D coordinate system X 0O3Y 0) after
propagating a distance d in free space. The wave field expression
at this plane can be expressed as

D�x 0,y 0�

=
eikd

iλd

ZZ
E 0�η, ξ� exp

�
ik
2d

��x 0 − η�2 � �y 0 − ξ�2�
�
dηdξ: (4)

This formula uses the Fresnel propagation operator; when
λ ≪ d, Eq. (4) yields an accurate model for near and far distan-
ces. The PSF [p�x 0,y 0�] is given by the square of themagnitude of
the complex-valued wave field, i.e., jD�x 0,y 0�j2, as

p�x 0,y 0� ∝ jD�x 0,y 0�j2: (5)

Equations (1) to (5) show that the PSF value is related to wave-
length. Considering that the pixels on the display panel are com-
posed of subpixels of red, green, and blue colors, we input the
PSF corresponding to these three colors into the end-to-end net-
work. In network optimization learning, on the one hand, the
surface shape of the DOE can be optimized; on the other hand,
the input image can be pre-corrected to adapt to the surface
shape of the DOE so that both chromatic aberration and geo-
metric aberration can be taken into account.
In addition, from the derivation process of the formula, it can

be seen that the light intensity distribution formed by the point
sources at different positions on the object surface on the HFS is
different. As shown in Fig. 3, the PSF convolution kernels cor-
responding to the three point sources at different positions are
different. For obtaining a more realistic simulation display
result, we evenly divide the input image into W × H regions,
and each subregion is denoted by Swh. The light intensity distri-
bution formed by each point in the subregion, after passing
through the optical element, can be approximated by its central
point, whose PSF is denoted by Pwh. The image formed by the
subregion Swh, through the optical system, is denoted by Dwh,
which can be described by the convolution of Swh and Pwh as

Dwh = Swh�Pwh: �6�

Using this formula, the display result, CI, of the input image,
after passing through the DOE, can be obtained as

CI =
XW
w=1

XH
h=1

Dwh =
XW
w=1

XH
h=1

Swh�Pwh: �7�

2.2. Pre-correction network

In this study, a network structure was built for the pre-correcting
input image and subsequently used to preprocess the original
image loaded on the display panel. Further, this developed net-
work structure was used to calculate the parameters of the deep
learning network and the surface parameters of the DOE jointly.
The proposed network structure consists of two parts: the rec-
ognition network and the generation network, as shown in
Fig. 4. The recognition network reduces the image size and

Fig. 3. Schematic diagram of the light intensity distribution at different field
points on the image plane.

Fig. 4. Pre-correction network structure.
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extracts some simple features through convolution and down
sampling, while the generation network obtains some deep fea-
tures through convolution and up sampling. In addition, to
make full use of the feature information and retain the richer
scene details, we superimpose the feature information on the
recognition network and generated network path.
Specifically, each layer of the recognition network is com-

posed of a convolutional layer for down sampling (stride: 2; size:
4 × 4), a batch normalization (BN) layer for preprocessing the
data, and a leaky rectified linear unit (LeakyReLU) activation
function. In each down sampling convolution, we reduce the size
of the feature map by half and double the number of feature
channels. Due to the data diversity of the 3D scene, the BN layer
can ensure that the data of each layer is passed down within an
effective range, and the LeakyReLU activation function allows
the loss signal to be propagated back to the previous layer.
Each layer of the generation network consists of a transposed
convolutional layer (step size: 2; size: 4 × 4) for up sampling,
a BN layer for preprocessing the data, and a ReLU activation
function. In each up sampling convolution, we double the size
of the feature map and reduce the number of feature channels
by half.

2.3. Overall loss function

Initially, the OII is obtained through the pre-corrected image
network proposed and described in section 2.2 to extract the
pre-corrected image. Subsequently, the final display image
can be calculated using the image display model derived in
Section 2.1. The traditional neural network usually uses the
mean square error (MSE)[32] function as the loss function during
the experiment. Typically, in practical applications, the image to
be displayed should be consistent with the OII to the maximum
possible extent. In this study, the experimental results showed
that solely using the MSE function does not yield accurate dis-
play results, and jointly training the surface parameters of the
pre-correction neural network and DOE is not possible.
Consequently, we introduced the image quality loss function—
structural similarity (SSIM)[33], which measures the similarity
between the reconstructed image and the original image.
Additionally, we combined the MSE and SSIM functions, with
a certain weight, as the loss function. The loss value between the
OII and the calculated display image (CI) is calculated using
Eq. (8) as

Loss�OII,CI� = α ×MSE�OII,CI� � β × SSIM�OII,CI�, (8)

where α� β = 1 and 0 < α < 1, 0 < β < 1. In this experiment,
the lowest loss values were obtained for α = 0.6 and β = 0.4.

3. Experiment and Simulation Results

The aperture diameter, focal length, and F-number of the optical
element designed in the experiment are 5 mm, 19.23 mm, and
3.85, respectively. The optical element is discretized with a
12.63 μm feature size on a 396 × 396 grid. Rotational symmetry

is considered in the design of diffractive elements. Although our
method can be generalized to rotational asymmetric shapes,
rotational symmetry is helpful for manufacturing using turning
machines. In order to more accurately construct 3D display spa-
tial voxels and improve light energy utilization, positive first-
order diffraction light was selected.
The experiment was carried out according to the workflow

shown in Fig. 1, and the experimental parameters are shown
in Table 1. First, a virtual camera array is used to capture infor-
mation from different directions of the 3D scene to develop the
3Dmodel. The LA in the 3D reproduction stage consists of 64 ×
36 lens units. According to the designed light field display sys-
tem parameters, the SI of the 3D model can be obtained, i.e., the
SI contains 64 × 36 EIs. These EIs become the training dataset in
this experiment. We choose the Momentum optimizer with
momentum = 0.5, which exhibits robustness to our image data-
set. Considering the parameters updating speed and preventing
the parameters from hovering near the optimal value, we choose
the learning rate of polynomial decay. When the starting learn-
ing rate and end learning rate were 10−7 and 10−9, respectively,
the training effect of network on our image dataset was better.
In the image subfield convolution stage, we divide the pre-

corrected EI into 6 × 6 subregions (as shown in Fig. 5), and
the corresponding PSF convolution core array also contains
6 × 6 PSF convolution cores. The sampling point of each PSF

Table 1. Optical Element and Image Dataset Parameters.

Parameters Values

Aperture diameter 5 mm

Light source distance (zo) 20 mm

Propagation distance (d) 500 mm

Focal length 19.23 mm

F number 3.85

Number of training dataset images 64 × 36 (2304)

Number of image subregions 6 × 6 (36)

Fig. 5. All 36 subsections of an EI and its corresponding diffractive lens unit.
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convolution core is consistent with the resolution of the subre-
gion image. The experimental DOE and loss curve obtained dur-
ing the training using the proposed end-to-end framework are
shown in Figs. 6(a) and 6(b), respectively. The experimental
DOE and loss curve obtained during the training without using
the pre-correction network are shown in Figs. 7(a) and 7(b),
respectively. Due to the rotational symmetry of the lens unit,
Figs. 6(c) and 7(c) show the logarithm of nine of the 6 × 6
PSF convolution kernels (corresponding to the nine subregions
marked in Fig. 5).
To verify the effectiveness of the proposed end-to-end joint

optimization framework, we conducted optical simulation
experiments. As shown in Fig. 8, the simulation experiments
were carried out from five different observation positions: cen-
tral position, above, below, left, and right. Figures 8(a)–8(c) dis-
play the image of the original scene, simulation results without
using the pre-correction network, and simulation results with
end-to-end optimization, respectively. As evident from the
enlarged images shown in Figs. 8(b) and 8(c), the experimental
results optimized by the end-to-end method as well as the dis-
play quality are significantly improved. In addition, the peak sig-
nal to noise ratio (PSNR) value is significantly improved, which
proves the effectiveness of the framework.
To demonstrate the effectiveness of dividing the field of view

to employ multiple PSFs, we supplemented a comparative sim-
ulation experiment using a single PSF, and the simulation results
are shown in Fig. 9. When using a single PSF approximation, it
can be seen from Fig. 9 that only the simulation results from the
center viewpoint are better, and this difference will gradually

accumulate as the viewing angle increases. Furthermore, the
experimental results shown in Fig. 9 are better than those shown
in Fig. 8 with or without the use of the pre-correction network,
which shows that dividing the field of view to employ multiple
PSFs is the correct choice.
The optical aberrations of the proposed design have the fol-

lowing properties. The chromatic variation is small because the
deep diffraction lens surface [as shown in Fig. 6(a)] obtained by
using end-to-end frame optimization results in only small focal
length differences in the visible wavelength region. In addition,
the diffraction lenses also interact with each other, which is
taken into account in our design. Similar to the traditional opti-
cal LA, the 3D optical field display system based on the diffrac-
tion LA will form multiple view areas in space. We form the
region of interaction between diffraction lenses outside the vis-
ible region to ensure the purity of spatial voxels in the visible
region.

Fig. 6. Experimental results with end-to-end optimization: (a) diffractive
element profile; (b) loss curve during training; and (c) PSF of nine fields of
view, in logarithmic scale.

Fig. 7. Experimental results without pre-correction network: (a) diffractive
element profile; (b) loss curve during training; and (c) PSF of nine fields of
view, in logarithmic scale.

Fig. 8. Simulation results for different viewing positions (with multiple PSFs):
(a) original scene; (b) simulation results without pre-correction network; and
(c) simulation results with end-to-end optimization.
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One possible solution similar to diffraction lenses is metal-
enses, which have recently enabled the fabrication of single
ultrathin optical elements that encode wavelength-dependent
phase patterns onto the incoming light. There is a recent
paper[34] that proposed neural nano-optics, a high-quality,
polarization-insensitive nano-optic imager. They jointly opti-
mized the metasurface and deconvolution algorithm with an
end-to-end differentiable image formation model. We have
similarities in the idea of using end-to-end framework optimi-
zation design, but there are great differences in each step. The
first is the difference of physical process: the paper mentioned
above is about the imaging process, and the ultimate goal is
how to capture the picture of the real world and record it clearly.
Our work is used for 3D display, and the ultimate goal is to
clearly show the content loaded on the display panel to the
viewer. Secondly, themodeling process of optical elements is dif-
ferent: they optimize the metasurface in phase function basis as
opposed to in a pixel-by-pixel manner to avoid local minima.

We derive a wave-based image formation model, which takes
into account the diffraction and wavelength-dependent effects
when imaging natural scenes and expresses the phase delay
by the variable of height. Finally, there are the differences in
the network and its usefulness: the network they built is used
to process the images loaded on the sensor and combined with
the deconvolution operation tomake the sensor image clear. The
network we built is not only used to pre-correct the input image
loaded on the display panel, but also to extract the characteristics
of the input image and jointly optimize the design of optical ele-
ments so that the preprocessed image can better match the opti-
cal characteristics of the designed optical elements. In actual
production, the metalens proposed in the above-mentioned
paper has the advantages of ultrathin thickness at the wave-
length level, which is comparable to the performance and polari-
zation operation of traditional lenses, but its processing is
expensive and time-consuming, difficult to make large aperture,
and unsuitable for mass production. However, the diffractive
lens we proposed can be mass produced by gray-scale lithogra-
phy, which is commonly used in the microelectronics industry,
and can be processed with centimeter large aperture. In addition,
combined with the proposed end-to-end optimization frame-
work, the diffractive lens we designed has good optical perfor-
mance in 3D display. But, the work of this paper mentioned
above is advanced and has potential revolutionary value in rede-
fining the optical industry. At the same time, in the design of
optical elements for large viewing angle display, this paper gives
us great inspiration for our future work.

4. Conclusion

In this paper, we propose and introduce an end-to-end joint
optimization method for DOE and for preprocessing input
images. The method mainly includes two steps. In the first step,
we establish a DOEmodel, derive the light intensity distribution
of point light sources, from different fields of view, at the imag-
ing surface based on wave optics theory, and obtain the corre-
sponding PSF convolution kernel array. In the second step, we
build a pre-corrected image network to preprocess the input
image and load the preprocessed image onto the display panel.
Finally, combining the MSE and SSIM loss functions and
employing the EIs that form the SIs as the training dataset,
we jointly calculate the surface parameters of the DOE, the
parameters of the pre-corrected image network, and the pre-
processed image. The surface parameters of the DOE as well
as the PSF of the sampling points, extracted from different fields
of view, are obtained through this method. The simulation
results show that the end-to-end joint optimization method
effectively reduces the aberration problem and significantly
improves the quality of the display image.
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