• Opto-Electronic Advances
  • Vol. 4, Issue 2, 200031-1 (2021)
Hongtao Wang1、2、3、4, Chenglong Hao3, Han Lin1, Yongtian Wang2, Tian Lan2、*, Cheng-Wei Qiu3, and Baohua Jia1
Author Affiliations
  • 1Centre for Translational Atomaterials, Faculty of Science, Engineering and Technology, Swinburne University of Technology, P.O. Box 218, Hawthorn VIC 3122, Australia
  • 2Key Laboratory of Photoelectronic Imaging Technology and System, Ministry of Education of China, School of Optics and Photonics, Beijing Institute of Technology, Beijing 100081, China
  • 3Department of Electrical and Computer Engineering, National University of Singapore, 4 Engineering Drive 3, Singapore 117583, Singapore
  • 4Engineering Product Development Pillar, Singapore University of Technology and Design, 8 Somapah Road, 487372, Singapore.
  • show less
    DOI: 10.29026/oea.2021.200031 Cite this Article
    Hongtao Wang, Chenglong Hao, Han Lin, Yongtian Wang, Tian Lan, Cheng-Wei Qiu, Baohua Jia. Generation of super-resolved optical needle and multifocal array using graphene oxide metalenses[J]. Opto-Electronic Advances, 2021, 4(2): 200031-1 Copy Citation Text show less

    Abstract

    Ultrathin flat metalenses have emerged as promising alternatives to conventional diffractive lenses, offering new possibilities for myriads of miniaturization and interfacial applications. Graphene-based materials can achieve both phase and amplitude modulations simultaneously at a single position due to the modification of the complex refractive index and thickness by laser conversion from graphene oxide into graphene like materials. In this work, we develop graphene oxide metalenses to precisely control phase and amplitude modulations and to achieve a holistic and systematic lens design based on a graphene-based material system. We experimentally validate our strategies via demonstrations of two graphene oxide metalenses: one with an ultra-long (~16λ) optical needle, and the other with axial multifocal spots, at the wavelength of 632.8 nm with a 200 nm thin film. Our proposed graphene oxide metalenses unfold unprecedented opportunities for accurately designing graphene-based ultrathin integratable devices for broad applications.
    $ Am{p}^{2}={\rm{exp}}\left(C\cdot \textit{ϕ} \right)\;, $(1)

    View in Article

    $ \begin{split} & {I}_{{\rm{needle}}}\left(z\right)=\\& \left\{\!\!\!\begin{array}{l}1,\; 205.73\;{\mu\rm{m}} \le z\le 215.22\;{\mu\rm{m}} \left(325\lambda \le z\le 340\lambda \right)\\ 0,\; {\rm{otherwise}}\end{array}\right. \end{split},$(2)

    View in Article

    $ {I}_{{\rm{multifoci}}}\left(z\right)=\sum\limits _{i=1}^{4}1-\left|\frac{1}{{t}_{0}}\left(z-{z}_{i}\right)\right| \;.$(3)

    View in Article

    $ \begin{split} & E\left( {{r} = 0,z = f} \right) \\ & \qquad = \int\limits_0^{{a_{\max}}} {E_0}\left( {{r_1},z = 0} \right)r\frac{{\,{\rm{exp}} \, \left( {{\rm{i}}k\sqrt {{z^2} + {r_1}^2} } \right)}}{{{z^2} + {r_1}^2}}\\ & \qquad\times \left( {{\rm{i}}k - \frac{1}{{\sqrt {{z^2} + {r_1}^2} }}} \right){\rm{d}}r_1\;,\\ & {E_0}\left( {{r_1},z = 0} \right) \\ & \qquad= \left\{\!\! {\begin{array}{*{20}{l}} {{A_{{\rm{GO}}}}\,{{\rm{exp}}} \, \left( {{\rm{i}}{\phi _{{\rm{GO}}}}} \right),\;{\rm{without}}\;{\rm{laser}}\;{\rm{reduction}}}\\ {{A_{\rm{T}}}\,{{\rm{exp}}} \,\left( {{\rm{i}}{\phi _{\rm{T}}}} \right),\;{\rm{with}}\;{\rm{laser}}\;{\rm{reduction}}} \end{array}}, \right.\\ & \qquad\qquad \qquad I = {\rm{abs}}{\left( E \right)^2}\;,\\[-11pt] \end{split} $ (4)

    View in Article

    $\left\{ \begin{array}{*{20}{l}} {{a_{m + 1}} - {a_m} > l}\\ {{a_1} > d}\\ {{NA} \ge N{A_{\min }}} \end{array}\right. \;,$ (5)

    View in Article

    Hongtao Wang, Chenglong Hao, Han Lin, Yongtian Wang, Tian Lan, Cheng-Wei Qiu, Baohua Jia. Generation of super-resolved optical needle and multifocal array using graphene oxide metalenses[J]. Opto-Electronic Advances, 2021, 4(2): 200031-1
    Download Citation