• Opto-Electronic Advances
  • Vol. 4, Issue 2, 200031-1 (2021)
Hongtao Wang1、2、3、4, Chenglong Hao3, Han Lin1, Yongtian Wang2, Tian Lan2、*, Cheng-Wei Qiu3, and Baohua Jia1
Author Affiliations
  • 1Centre for Translational Atomaterials, Faculty of Science, Engineering and Technology, Swinburne University of Technology, P.O. Box 218, Hawthorn VIC 3122, Australia
  • 2Key Laboratory of Photoelectronic Imaging Technology and System, Ministry of Education of China, School of Optics and Photonics, Beijing Institute of Technology, Beijing 100081, China
  • 3Department of Electrical and Computer Engineering, National University of Singapore, 4 Engineering Drive 3, Singapore 117583, Singapore
  • 4Engineering Product Development Pillar, Singapore University of Technology and Design, 8 Somapah Road, 487372, Singapore.
  • show less
    DOI: 10.29026/oea.2021.200031 Cite this Article
    Hongtao Wang, Chenglong Hao, Han Lin, Yongtian Wang, Tian Lan, Cheng-Wei Qiu, Baohua Jia. Generation of super-resolved optical needle and multifocal array using graphene oxide metalenses[J]. Opto-Electronic Advances, 2021, 4(2): 200031-1 Copy Citation Text show less
    References

    [1] A Arbabi, E Arbabi, SM Kamali, Y Horie, S Han, et al. Miniature optical planar camera based on a wide-angle metasurface doublet corrected for monochromatic aberrations. Nat Commun, 7, 13682(2016).

    [2] B Groever, WT Chen, F Capasso. Meta-lens doublet in the visible region. Nano Lett, 17, 4902-4907(2017).

    [3] M Farmahini-Farahani, JR Cheng, H Mosallaei. Metasurfaces nanoantennas for light processing. J Opt Soc Am B, 30, 2365-2370(2013).

    [4] NF Yu, F Aieta, P Genevet, MA Kats, Z Gaburro, et al. A broadband, background-free quarter-wave plate based on plasmonic metasurfaces. Nano Lett, 12, 6328-6333(2012).

    [5] XQ Zhang, Z Tian, WS Yue, JQ Gu, S Zhang, et al. Broadband terahertz wave deflection based on c-shape complex metamaterials with phase discontinuities. Adv Mater, 25, 4567-4572(2013).

    [6] P Genevet, NF Yu, F Aieta, J Lin, MA Kats, et al. Ultra-thin plasmonic optical vortex plate based on phase discontinuities. Appl Phys Lett, 100, 013101(2012).

    [7] MA Kats, P Genevet, G Aoust, NF Yu, R Blanchard, et al. Giant birefringence in optical antenna arrays with widely tailorable optical anisotropy. Proc Natl Acad Sci USA, 109, 12364-12368(2012).

    [8] F Monticone, NM Estakhri, A Alù. Full control of nanoscale optical transmission with a composite metascreen. Phys Rev Lett, 110, 203903(2013).

    [9] C Pfeiffer, A Grbic. Metamaterial huygens' surfaces: tailoring wave fronts with reflectionless sheets. Phys Rev Lett, 110, 197401(2013).

    [10] NF Yu, P Genevet, MA Kats, F Aieta, JP Tetienne, et al. Light propagation with phase discontinuities: generalized laws of reflection and refraction. Science, 334, 333-337(2011).

    [11] K Keskinbora, C Grévent, M Bechtel, M Weigand, E Goering, et al. Ion beam lithography for Fresnel zone plates in X-ray microscopy. Opt Express, 21, 11747-11756(2013).

    [12] T Jwad, SA Deng, H Butt, S Dimov. Fabrication of TiO2 thin film-based fresnel zone plates by nanosecond laser direct writing. J Micro Nano-Manuf, 6, 011001(2018).

    [13] D Bowman, TL Harte, V Chardonnet, Groot De, SJ Denny, et al. High-fidelity phase and amplitude control of phase-only computer generated holograms using conjugate gradient minimisation. Opt Express, 25, 11692-11700(2017).

    [14] GY Lee, G Yoon, SY Lee, H Yun, J Cho, et al. Complete amplitude and phase control of light using broadband holographic metasurfaces. Nanoscale, 10, 4237-4245(2018).

    [15] LX Liu, XQ Zhang, M Kenney, XQ Su, NN Xu, et al. Broadband metasurfaces with simultaneous control of phase and amplitude. Adv Mater, 26, 5031-5036(2014).

    [16] Q Wang, XQ Zhang, YH Xu, JQ Gu, YF Li, et al. Broadband metasurface holograms: toward complete phase and amplitude engineering. Sci Rep, 6, 32867(2016).

    [17] G Yoon, D Lee, KT Nam, J Rho. “Crypto-display” in dual-mode metasurfaces by simultaneous control of phase and spectral responses. ACS Nano, 12, 6421-6428(2018).

    [18] C Pfeiffer, C Zhang, V Ray, LJ Guo, A Grbic. High performance bianisotropic metasurfaces: asymmetric transmission of light. Phys Rev Lett, 113, 023902(2014).

    [19] ML Tseng, HH Hsiao, CH Chu, MK Chen, G Sun, et al. Metalenses: advances and applications. Adv Opt Mater, 6, 1800554(2018).

    [20] J Engelberg, U Levy. The advantages of metalenses over diffractive lenses. Nat Commun, 11, 1991(2020).

    [21] SM Wang, PC Wu, VC Su, YC Lai, MK Chen, et al. A broadband achromatic metalens in the visible. Nat Nanotechnol, 13, 227-232(2018).

    [22] RH Lin, XH Li. Multifocal metalens based on multilayer pancharatnam-berry phase elements architecture. Opt Lett, 44, 2819-2822(2019).

    [23] ML Tseng, YW Huang, MK Hsiao, HW Huang, HM Chen, et al. Fast fabrication of a Ag nanostructure substrate using the femtosecond laser for broad-band and tunable plasmonic enhancement. ACS Nano, 6, 5190-5197(2012).

    [24] CH Chu, ML Tseng, Shiue da, SW Chen, HP Chiang, et al. Fabrication of phase-change Ge2Sb2Te5 nano-rings. Opt Express, 19, 12652-12657(2011).

    [25] N Lassaline, R Brechbühler, SJW Vonk, K Ridderbeek, M Spieser, et al. Optical fourier surfaces. Nature, 582, 506-510(2020).

    [26] KTP Lim, HL Liu, YJ Liu, JKW Yang. Holographic colour prints for enhanced optical security by combined phase and amplitude control. Nat Commun, 10, 25(2019).

    [27] WH Yang, SM Xiao, QH Song, YL Liu, YK Wu, et al. All-dielectric metasurface for high-performance structural color. Nat Commun, 11, 1864(2020).

    [28] M Semmlinger, ML Tseng, J Yang, M Zhang, C Zhang, et al. Vacuum ultraviolet light-generating metasurface. Nano Lett, 18, 5738-5743(2018).

    [29] BH Chen, PC Wu, VC Su, YC Lai, CH Chu, et al. GaN metalens for pixel-level full-color routing at visible light. Nano Lett, 17, 6345-6352(2017).

    [30] XW Chen, X Hai, JH Wang. Graphene/graphene oxide and their derivatives in the separation/isolation and preconcentration of protein species: a review. Anal Chim Acta, 922, 1-10(2016).

    [31] XR Zheng, BH Jia, H Lin, L Qiu, D Li, et al. Highly efficient and ultra-broadband graphene oxide ultrathin lenses with three-dimensional subwavelength focusing. Nat Commun, 6, 8433(2015).

    [32] YY Yang, H Lin, BY Zhang, YN Zhang, XR Zheng, et al. Graphene-based multilayered metamaterials with phototunable architecture for on-chip photonic devices. ACS Photonics, 6, 1033-1040(2019).

    [33] TS Yang, H Lin, XR Zheng, KP Loh, BH Jia. Tailoring pores in graphene-based materials: from generation to applications. J Mater Chem A, 5, 16537-16558(2017).

    [34] CL Hao, ZQ Nie, HP Ye, H Li, Y Luo, et al. Three-dimensional supercritical resolved light-induced magnetic holography. Sci Adv, 3, e1701398(2017).

    [35] H Lin, BCP Sturmberg, KT Lin, YY Yang, XR Zheng, et al. A 90-nm-thick graphene metamaterial for strong and extremely broadband absorption of unpolarized light. Nat Photonics, 13, 270-276(2019).

    [36] GY Cao, H Lin, S Fraser, XR Zheng, Rosal Del, et al. Resilient graphene ultrathin flat lens in aerospace, chemical, and biological harsh environments. ACS Appl Mater Interfaces, 11, 20298-20303(2019).

    [37] PP Mondal, A Diaspro. Simultaneous multilayer scanning and detection for multiphoton fluorescence microscopy. Sci Rep, 1, 149(2011).

    [38] XP Li, YY Cao, M Gu. Superresolution-focal-volume induced 3.0 Tbytes/disk capacity by focusing a radially polarized beam. Opt Lett, 36, 2510-2512(2011).

    [39] JM Auñón, CW Qiu, M Nieto-Vesperinas. Tailoring photonic forces on a magnetodielectric nanoparticle with a fluctuating optical source. Phys Rev A, 88, 043817(2013).

    [40] J Godin, CH Chen, SH Cho, W Qiao, F Tsai, et al. Microfluidics and photonics for bio-system-on-a-chip: a review of advancements in technology towards a microfluidic flow cytometry chip. J Biophotonics, 1, 355-376(2008).

    [41] M Born, E Wolf. Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light(1999).

    [42] F Aieta, P Genevet, MA Kats, NF Yu, R Blanchard, et al. Aberration-free ultrathin flat lenses and axicons at telecom wavelengths based on plasmonic metasurfaces. Nano Lett, 12, 4932-4936(2012).

    [43] G Mínguez-Vega, J Lancis, J Caraquitena, V Torres-Company, P Andrés. High spatiotemporal resolution in multifocal processing with femtosecond laser pulses. Opt Lett, 31, 2631-2633(2006).

    [44] H Lin, BH Jia, M Gu. Dynamic generation of debye diffraction-limited multifocal arrays for direct laser printing nanofabrication. Opt Lett, 36, 406-408(2011).

    [45] M Gu, H Lin, XP Li. Parallel multiphoton microscopy with cylindrically polarized multifocal arrays. Opt Lett, 38, 3627-3630(2013).

    [46] H Lin, M Gu. Creation of diffraction-limited non-Airy multifocal arrays using a spatially shifted vortex beam. Appl Phys Lett, 102, 084103(2013).

    [47] LW Zhu, JJ Yu, DW Zhang, MY Sun, JN Chen. Multifocal spot array generated by fractional Talbot effect phase-only modulation. Opt Express, 22, 9798-9808(2014).

    [48] ZQ Nie, H Lin, XF Liu, AP Zhai, YT Tian, et al. Three-dimensional super-resolution longitudinal magnetization spot arrays. Light Sci Appl, 6, e17032(2017).

    [49] XF Zang, HZ Ding, Y Intaravanne, L Chen, Y Peng, et al. A multi-foci metalens with polarization-rotated focal points. Laser Photon Rev, 13, 1900182(2019).

    [50] MQ Mehmood, H Liu, K Huang, ST Mei, A Danner, et al. Broadband spin-controlled focusing via logarithmic-spiral nanoslits of varying width. Laser Photonics Rev, 9, 674-681(2015).

    [51] MY Li, WL Li, HY Li, YC Zhu, YT Yu. Controllable design of super-oscillatory lenses with multiple sub-diffraction-limit foci. Sci Rep, 7, 1335(2017).

    [52] GY Cao, XS Gan, H Lin, BH Jia. An accurate design of graphene oxide ultrathin flat lens based on Rayleigh-Sommerfeld theory. Opto-Electron Adv, 1, 180012(2018).

    [53] K Huang, HP Ye, JH Teng, SP Yeo, B Luk’yanchuk, et al. Optimization-free superoscillatory lens using phase and amplitude masks. Laser Photonics Rev, 8, 152-157(2014).

    [54] K Huang, F Qin, H Liu, HP Ye, CW Qiu, et al. Planar diffractive lenses: fundamentals, functionalities, and applications. Adv Mater, 30, 1704556(2018).

    [55] A Arbabi, Y Horie, AJ Ball, M Bagheri, A Faraon. Subwavelength-thick lenses with high numerical apertures and large efficiency based on high-contrast transmitarrays. Nat Commun, 6, 7069(2015).

    [56] XP Li, HR Ren, X Chen, J Liu, Q Li, et al. Athermally photoreduced graphene oxides for three-dimensional holographic images. Nat Commun, 6, 6984(2015).

    [57] XY Weng, LP Du, P Shi, XC Yuan. Tunable optical cage array generated by Dammann vector beam. Opt Express, 25, 9039-9048(2017).

    [58] SH Xu, YM Li, LR Lou. Axial optical trapping forces on two particles trapped simultaneously by optical tweezers. Appl Opt, 44, 2667-2672(2005).

    [59] YQ Zhao, QW Zhan, YL Zhang, YP Li. Creation of a three-dimensional optical chain for controllable particle delivery. Opt Lett, 30, 848-850(2005).

    [60] XR Zheng, H Lin, TS Yang, BH Jia. Laser trimming of graphene oxide for functional photonic applications. J Phys D Appl Phys, 50, 074003(2017).

    [61] YB Ma, GH Rui, B Gu, YP Cui. Trapping and manipulation of nanoparticles using multifocal optical vortex metalens. Sci Rep, 7, 14611(2017).

    [62] Jr Hummers, RE Offeman. Preparation of graphitic oxide. J Amer Chem Soc, 80, 1339(1958).

    [63] SP Boyd, L Vandenberghe. Convex Optimization(2004).

    [64] M Gu. Advanced Optical Imaging Theory(2000).

    [65] HP Ye, CW Qiu, K Huang, JH Teng, B Luk’yanchuk, et al. Creation of a longitudinally polarized subwavelength hotspot with an ultra-thin planar lens: vectorial Rayleigh-Sommerfeld method. Laser Phys Lett, 10, 065004(2013).

    Hongtao Wang, Chenglong Hao, Han Lin, Yongtian Wang, Tian Lan, Cheng-Wei Qiu, Baohua Jia. Generation of super-resolved optical needle and multifocal array using graphene oxide metalenses[J]. Opto-Electronic Advances, 2021, 4(2): 200031-1
    Download Citation