Journals
Advanced Photonics
Photonics Insights
Advanced Photonics Nexus
Photonics Research
Advanced Imaging
View All Journals
Chinese Optics Letters
High Power Laser Science and Engineering
Articles
Optics
Physics
Geography
View All Subjects
Conferences
CIOP
HPLSE
AP
View All Events
News
About CLP
Search by keywords or author
Login
Registration
Login in
Registration
Search
Search
Articles
Journals
News
Advanced Search
Top Searches
laser
the
2D Materials
Transformation optics
Quantum Photonics
Home
About
Issue in Progress
Current Issue
Special Issues
All Issues
Special Events
Journals >
>
Topics >
Polarization
Contents
Polarization
|
4 Article(s)
Highly efficient generation of arbitrary vector beams with tunable polarization, phase, and amplitude
Sheng Liu, Shuxia Qi, Yi Zhang, Peng Li, Dongjing Wu, Lei Han, and Jianlin Zhao
We propose an efficient and robust method to generate tunable vector beams by employing a single phase-type spatial light modulator (SLM). With this method, a linearly polarized Gaussian beam can be converted into a vector beam with arbitrarily controllable polarization state, phase, and amplitude. The energy loss during the conversion is greatly reduced and depends mainly on the reflectivity of the SLM. We experimentally demonstrate that conversion efficiency of about 47% is achieved by using an SLM with reflectivity of 62%. Several typical vector beams, including cylindrical vector beams, vector beams on higher order Poincaré spheres, and arbitrary vector beams attached with phases and with tunable amplitude, are generated and verified experimentally. This method is also expected to create high-power vector beams and play important roles in optical fabrication and light trapping.
We propose an efficient and robust method to generate tunable vector beams by employing a single phase-type spatial light modulator (SLM). With this method, a linearly polarized Gaussian beam can be converted into a vector beam with arbitrarily controllable polarization state, phase, and amplitude. The energy loss during the conversion is greatly reduced and depends mainly on the reflectivity of the SLM. We experimentally demonstrate that conversion efficiency of about 47% is achieved by using an SLM with reflectivity of 62%. Several typical vector beams, including cylindrical vector beams, vector beams on higher order Poincaré spheres, and arbitrary vector beams attached with phases and with tunable amplitude, are generated and verified experimentally. This method is also expected to create high-power vector beams and play important roles in optical fabrication and light trapping.
showLess
Photonics Research
Publication Date: Mar. 01, 2018
Vol. 6, Issue 4, 04000228 (2018)
Get PDF
View fulltext
Experimental realization to efficiently sort vector beams by polarization topological charge via Pancharatnam–Berry phase modulation
Shuiqin Zheng, Ying Li, Qinggang Lin, Xuanke Zeng, Guoliang Zheng, Yi Cai, Zhenkuan Chen, Shixiang Xu, and Dianyuan Fan
This paper reports the experimental realization of efficiently sorting vector beams by polarization topological charge (PTC). The PTC of a vector beam can be defined as the repetition number of polarization state change along the azimuthal axis, while its sign stands for the rotating direction of the polarization. Here, a couple of liquid crystal Pancharatnam–Berry optical elements (PBOEs) have been used to introduce conjugated spatial phase modulations for two orthogonal circular polarization states. Applying these PBOEs in a 4-f optical system, our experiments show the setup can work for PTC sorting with a separation efficiency of more than 58%. This work provides an effective way to decode information from different PTCs, which may be interesting in many fields, especially in optical communication.
This paper reports the experimental realization of efficiently sorting vector beams by polarization topological charge (PTC). The PTC of a vector beam can be defined as the repetition number of polarization state change along the azimuthal axis, while its sign stands for the rotating direction of the polarization. Here, a couple of liquid crystal Pancharatnam–Berry optical elements (PBOEs) have been used to introduce conjugated spatial phase modulations for two orthogonal circular polarization states. Applying these PBOEs in a 4-f optical system, our experiments show the setup can work for PTC sorting with a separation efficiency of more than 58%. This work provides an effective way to decode information from different PTCs, which may be interesting in many fields, especially in optical communication.
showLess
Photonics Research
Publication Date: Apr. 18, 2018
Vol. 6, Issue 5, 05000385 (2018)
Get PDF
View fulltext
Optically spatial information selection with hybridly polarized beam in atomic vapor
Jinwen Wang, Xin Yang, Yunke Li, Yun Chen, Mingtao Cao, Dong Wei, Hong Gao, and Fuli Li
Vector beams with spatially variant polarization have attracted much attention in recent years, with potential applications in both classical optics and quantum optics. In this work, we study a polarization selection of spatial intensity distribution by utilizing a hybridly polarized beam as a coupling beam and a circularly polarized beam as a probe beam in Rb87 atom vapor. We experimentally observe that the spatial intensity distribution of the probe beam after passing through atoms can be modulated by the hybridly polarized beam due to the optical pumping effect. Then, the information loaded in the probe beam can be designedly filtrated by an atomic system with a high extinction ratio. A detailed process of the optical pumping effect in our configurations and the corresponding absorption spectra are presented to interpret our experimental results, which can be used for the spatial optical information locally extracted based on an atomic system, which has potential applications in quantum communication and computation.
Vector beams with spatially variant polarization have attracted much attention in recent years, with potential applications in both classical optics and quantum optics. In this work, we study a polarization selection of spatial intensity distribution by utilizing a hybridly polarized beam as a coupling beam and a circularly polarized beam as a probe beam in Rb87 atom vapor. We experimentally observe that the spatial intensity distribution of the probe beam after passing through atoms can be modulated by the hybridly polarized beam due to the optical pumping effect. Then, the information loaded in the probe beam can be designedly filtrated by an atomic system with a high extinction ratio. A detailed process of the optical pumping effect in our configurations and the corresponding absorption spectra are presented to interpret our experimental results, which can be used for the spatial optical information locally extracted based on an atomic system, which has potential applications in quantum communication and computation.
showLess
Photonics Research
Publication Date: Apr. 23, 2018
Vol. 6, Issue 5, 05000451 (2018)
Get PDF
View fulltext
Wavelength-switchable vortex beams based on a polarization-dependent microknot resonator
Jinqiu Zheng, Ao Yang, Teng Wang, Xianglong Zeng, Ning Cao, Mei Liu, Fufei Pang, and Tingyun Wang
We experimentally demonstrated a method of generating continuously wavelength-switchable optical vortex beams (OVBs) in an all-fiber laser. A polarization-dependent microknot resonator (MKR) functions as comb filter and accounts for the narrow linewidth (0.018 nm) of multiwavelength channels. The wavelength interval corresponds to the free spectral range of the MKR. We exploit a fused SMF–FMF (single mode fiber–few mode fiber) mode coupler to obtain broadband mode conversion and successfully achieve multiwavelength switchable OVBs. As far as we know, this is the first report about identical multiwavelength vortex beams with topological charges of ±1. It has been verified that each channel of the vortex beams preserves the same orbital angular momentum (OAM) properties through their clear spiral interferograms. Multiwavelength vortex beams with identical OAM properties are desirable for multiplexing, exchanging, and routing to further improve the capacity of optical fiber transmission.
We experimentally demonstrated a method of generating continuously wavelength-switchable optical vortex beams (OVBs) in an all-fiber laser. A polarization-dependent microknot resonator (MKR) functions as comb filter and accounts for the narrow linewidth (0.018 nm) of multiwavelength channels. The wavelength interval corresponds to the free spectral range of the MKR. We exploit a fused SMF–FMF (single mode fiber–few mode fiber) mode coupler to obtain broadband mode conversion and successfully achieve multiwavelength switchable OVBs. As far as we know, this is the first report about identical multiwavelength vortex beams with topological charges of ±1. It has been verified that each channel of the vortex beams preserves the same orbital angular momentum (OAM) properties through their clear spiral interferograms. Multiwavelength vortex beams with identical OAM properties are desirable for multiplexing, exchanging, and routing to further improve the capacity of optical fiber transmission.
showLess
Photonics Research
Publication Date: Apr. 18, 2018
Vol. 6, Issue 5, 05000396 (2018)
Get PDF
View fulltext
Topics
Adaptive Optics
Array Waveguide Devices
Atmospheric and Oceanic Optics
Coherence and Statistical Optics
Comments
Correction
Diffraction and Gratings
Digital Holography
Dispersion
Editorial
Fiber Devices
Fiber Optic Sensors
Fiber Optics
Fiber Optics and Optical Communications
Group Iv Photonics
Holography
Holography, Gratings, and Diffraction
Image Processing
Image Processing and Image Analysis
Imaging
Imaging Systems
Imaging Systems, Microscopy, and Displays
Instrumentation and Measurements
Integrated Optics
Integrated Optics Devices
Integrated Photonics
INTEGRATED PHOTONICS: CHALLENGES AND PERSPECTIVES
Interferometry
Interview
Laser Materials
Laser Materials Processing
Lasers and Laser Optics
Light-emitting Diodes
Liquid-Crystal Devices
Materials
Medical Optics and Biotechnology
Metamaterials
Microlasers
Microscopy
Microwave Photonics
Mode-locked Lasers
Nanomaterials
Nanophotonics
Nanophotonics and Photonic Crystals
Nanostructures
Nonlinear Optic
Nonlinear Optics
Optical and Photonic Materials
Optical Communications
Optical Communications and Interconnects
Optical Devices
Optical Manipulation
Optical Materials
OPTICAL MICROCAVITIES
Optical Resonators
Optical Trapping and Manipulation
Optical Vortices
Optics at Surfaces
Optoelectronics
Photodetectors
Photon Statistics
Photonic Crystals
Photonic Crystals and Devices
Photonic Manipulation
Photonic Manipulation
Physical Optics
Plasmonics
Plasmonics and Metamaterials
Polarization
Polarization and Ellipsometry
Polarization Rotators
Pulse Propagation and Temporal Solitons
Quantum Electrodynamics
Quantum Optics
QUANTUM PHOTONICS
Quantum Well Devices
Regular Papers
Remote Sensing and Sensors
Research Articles
Resonators
Scattering
Semiconductor UV Photonics
Sensors
Silicon Photonics
Spectroscopy
Surface Optics and Plasmonics
Surface Plasmons
Surface Waves
Terahertz Photonics: Applications and Techniques
Thin Film Devices
Thin Films
Ultrafast Optics