• Journal of Semiconductors
  • Vol. 41, Issue 8, 082002 (2020)
Chang Li1、2, Cheng Chen2、3, Jie Chen2、3, Tao He4, Hongwei Li2、5, Zeyuan Yang1、2, Liu Xie2, Zhongchang Wang6, and Kai Zhang2
Author Affiliations
  • 1Nano Science and Technology Institute, University of Science and Technology of China, Suzhou 215123, China
  • 2i-Lab, Suzhou Institute of Nano-Tech and Nano-Bionics (SINANO), Chinese Academy of Sciences, Suzhou 215123, China
  • 3School of Materials Science and Engineering, Shanghai University, Shanghai 200444, China
  • 4CAS Key Laboratory of Nanodevices and Applications, Suzhou Institute of Nano-Tech and Nano-Bionics (SINANO), Chinese Academy of Sciences, Suzhou 215123, China
  • 5Institute of Microscale Optoelectronics, Collaborative Innovation Centre for Optoelectronic Science & Technology, Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen Key Laboratory of Micro-Nano Photonic Information Technology, Guangdong Laboratory of Artificial Intelligence and Digital Economy (SZ), Shenzhen University, Shenzhen 518060, China
  • 6International Iberian Nanotechnology Laboratory (INL), Avenida Mestre José Veiga s/n, Braga 4715-330, Portugal
  • show less
    DOI: 10.1088/1674-4926/41/8/082002 Cite this Article
    Chang Li, Cheng Chen, Jie Chen, Tao He, Hongwei Li, Zeyuan Yang, Liu Xie, Zhongchang Wang, Kai Zhang. High-performance junction field-effect transistor based on black phosphorus/β-Ga2O3 heterostructure[J]. Journal of Semiconductors, 2020, 41(8): 082002 Copy Citation Text show less
    References

    [1] M Orita, H Ohta, M Hirano et al. Deep-ultraviolet transparent conductive β-Ga2O3 thin films. Appl Phys Lett, 77, 4166(2000).

    [2] S J Pearton, J C Yang, P H Cary et al. A review of Ga2O3 materials, processing, and devices. Appl Phys Rev, 5, 011301(2018).

    [3] H Zhou, J C Zhang, C F Zhang et al. A review of the most recent progresses of state-of-art gallium oxide power devices. J Semicond, 40, 011803(2019).

    [4] H Dong, H W Xue, Q M He et al. Progress of power field effect transistor based on ultra-wide bandgap Ga2O3 semiconductor material. J Semicond, 40, 011802(2019).

    [5] M Higashiwaki, K Sasaki, H Murakami et al. Recent progress in Ga2O3power devices. Semicond Sci Technol, 31, 034001(2016).

    [6] W S Hwang, A Verma, H Peelaers et al. High-voltage field effect transistors with wide-bandgap β-Ga2O3 nanomembranes. Appl Phys Lett, 104, 203111(2014).

    [7] S Ahn, F Ren, J Kim et al. Effect of front and back gates on β-Ga2O3 nano-belt field-effect transistors. Appl Phys Lett, 109, 062102(2016).

    [8] J Kim, M A Mastro, M J Tadjer et al. Heterostructure WSe2–Ga2O3 junction field-effect transistor for low-dimensional high-power electronics. ACS Appl Mater Interfaces, 10, 29724(2018).

    [9] J Guo, L Y Wang, Y W Yu et al. SnSe/MoS2 van der Waals heterostructure junction field-effect transistors with nearly ideal subthreshold slope. Adv Mater, 31, 1902962(2019).

    [10] Z Hajnal, J Miró, G Kiss et al. Role of oxygen vacancy defect states in then-type conduction of β-Ga2O3. J Appl Phys, 86, 3792(1999).

    [11] S K Barman, M N Huda. Mechanism behind the easy exfoliation of Ga2O3 ultra-thin film along (100) surface. Phys Status Solidi RRL, 13, 1800554(2019).

    [12] Y Liu, Y Huang, X F Duan. Van der Waals integration before and beyond two-dimensional materials. Nature, 567, 323(2019).

    [13] X D Yan, I S Esqueda, J H Ma et al. High breakdown electric field in β-Ga2O3/graphene vertical barristor heterostructure. Appl Phys Lett, 112, 032101(2018).

    [14] J Kim, J H Kim. Monolithically integrated enhancement-mode and depletion-mode β-Ga2O3 MESFETs with graphene-gate architectures and their logic applications. ACS Appl Mater Interfaces, 12, 7310(2020).

    [15] J Kim, M A Mastro, M J Tadjer et al. Quasi-two-dimensional h-BN/β-Ga2O3 heterostructure metal–insulator–semiconductor field-effect transistor. ACS Appl Mater Interfaces, 9, 21322(2017).

    [16] L K Li, Y J Yu, G J Ye et al. Black phosphorus field-effect transistors. Nat Nanotechnol, 9, 372(2014).

    [17] H Liu, A T Neal, Z Zhu et al. Phosphorene: an unexplored 2D semiconductor with a high hole mobility. ACS Nano, 8, 4033(2014).

    [18] F N Xia, H Wang, Y C Jia. Rediscovering black phosphorus as an anisotropic layered material for optoelectronics and electronics. Nat Commun, 5, 4458(2014).

    [19] Z Q Zhou, Y Cui, P H Tan et al. Optical and electrical properties of two-dimensional anisotropic materials. J Semicond, 40, 061001(2019).

    [20] Y J Xu, Z Shi, X Y Shi et al. Recent progress in black phosphorus and black-phosphorus-analogue materials: Properties, synthesis and applications. Nanoscale, 11, 14491(2019).

    [21] J S Qiao, X H Kong, Z X Hu et al. High-mobility transport anisotropy and linear dichroism in few-layer black phosphorus. Nat Commun, 5, 4475(2014).

    [22] B C Deng, V Tran, Y J Xie et al. Efficient electrical control of thin-film black phosphorus bandgap. Nat Commun, 8, 14474(2017).

    [23] Y J Xu, X Y Shi, Y S Zhang et al. Epitaxial nucleation and lateral growth of high-crystalline black phosphorus films on silicon. Nat Commun, 11, 1330(2020).

    [24] N Youngblood, C Chen, S J Koester et al. Waveguide-integrated black phosphorus photodetector with high responsivity and low dark current. Nat Photonics, 9, 247(2015).

    [25] X L Chen, X B Lu, B C Deng et al. Widely tunable black phosphorus mid-infrared photodetector. Nat Commun, 8, 1672(2017).

    [26] W K Zhu, X Wei, F G Yan et al. Broadband polarized photodetector based on p-BP/n-ReS2 heterojunction. J Semicond, 40, 092001(2019).

    [27] M Batmunkh, M Bat-Erdene, J G Shapter. Black phosphorus: Synthesis and application for solar cells. Adv Energy Mater, 8, 1701832(2018).

    [28] Y Yang, J Gao, Z Zhang et al. Black phosphorus based photocathodes in wideband bifacial dye-sensitized solar cells. Adv Mater, 28, 8937(2016).

    [29] S K Muduli, E Varrla, S A Kulkarni et al. 2D black phosphorous nanosheets as a hole transporting material in perovskite solar cells. J Power Sources, 371, 156(2017).

    [30] A G Ricciardulli, P W M Blom. Solution-processable 2D materials applied in light-emitting diodes and solar cells. Adv Mater Technol, 1900972(2020).

    [31] X X Ge, Z H Xia, S J Guo. Recent advances on black phosphorus for biomedicine and biosensing. Adv Funct Mater, 29, 1900318(2019).

    [32] G Wu, X J Wu, Y J Xu et al. High-performance hierarchical black-phosphorous-based soft electrochemical actuators in bioinspired applications. Adv Mater, 31, 1806492(2019).

    [33] W Tao, N Kong, X Y Ji et al. Emerging two-dimensional monoelemental materials (Xenes) for biomedical applications. Chem Soc Rev, 48, 2891(2019).

    [34] M Qiu, D Wang, W Y Liang et al. Novel concept of the smart NIR-light-controlled drug release of black phosphorus nanostructure for cancer therapy. Proc Natl Acad Sci USA, 115, 501(2018).

    [35] Y J Xu, J Yuan, K Zhang et al. Field-induced n-doping of black phosphorus for CMOS compatible 2D logic electronics with high electron mobility. Adv Funct Mater, 27, 1702211(2017).

    [36] W Lv, X Fu, X Luo et al. Multistate logic inverter based on black phosphorus/SnSeS heterostructure. Adv Electron Mater, 5, 1800416(2019).

    [37] P J Jeon, Y T Lee, J Y Lim et al. Black phosphorus-zinc oxide nanomaterial heterojunction for p–n diode and junction field-effect transistor. Nano Lett, 16, 1293(2016).

    [38] J Y Lim, M Kim, Y Jeong et al. Van der Waals junction field effect transistors with both n- and p-channel transition metal dichalcogenides. npj 2D Mater Appl, 2, 37(2018).

    [39] J H Wang, D N Liu, H Huang et al. In-plane black phosphorus/dicobalt phosphide heterostructure for efficient electrocatalysis. Angew Chem Int Ed, 57, 2600(2018).

    [40] Y Zheng, Z H Yu, H H Ou et al. Black phosphorus and polymeric carbon nitride heterostructure for photoinduced molecular oxygen activation. Adv Funct Mater, 28, 1705407(2018).

    [41] Q Y He, Y Liu, C L Tan et al. Quest for p-type two-dimensional semiconductors. ACS Nano, 13, 12294(2019).

    [42] Y X Deng, Z Luo, N J Conrad et al. Black phosphorus-monolayer MoS2 van der Waals heterojunction p–n diode. ACS Nano, 8, 8292(2014).

    [43] Q Lv, F G Yan, N Mori et al. Interlayer band-to-band tunneling and negative differential resistance in van der Waals BP/InSe field-effect transistors. Adv Funct Mater, 30, 1910713(2020).

    Chang Li, Cheng Chen, Jie Chen, Tao He, Hongwei Li, Zeyuan Yang, Liu Xie, Zhongchang Wang, Kai Zhang. High-performance junction field-effect transistor based on black phosphorus/β-Ga2O3 heterostructure[J]. Journal of Semiconductors, 2020, 41(8): 082002
    Download Citation