• Journal of Semiconductors
  • Vol. 40, Issue 12, 122401 (2019)
Raheela Rasool, Najeeb-ud-Din, and G. M. Rather
Author Affiliations
  • Department of Electronics and Communication, National Institute of Technology, Srinagar, Jammu & Kashmir, India
  • show less
    DOI: 10.1088/1674-4926/40/12/122401 Cite this Article
    Raheela Rasool, Najeeb-ud-Din, G. M. Rather. Analytical model for the effects of the variation of ferrolectric material parameters on the minimum subthreshold swing in negative capacitance capacitor[J]. Journal of Semiconductors, 2019, 40(12): 122401 Copy Citation Text show less

    Abstract

    In this paper, we analytically study the relationship between the coercive field, remnant polarization and the thickness of a ferroelectric material, required for the minimum subthreshold swing in a negative capacitance capacitor. The interdependence of the ferroelectric material properties shown in this study is defined by the capacitance matching conditions in the subthreshold region in an NC capacitor. In this paper, we propose an analytical model to find the optimal ferroelectric thickness and channel doping to achieve a minimum subthreshold swing, due to a particular ferroelectric material. Our results have been validated against the numerical and experimental results already available in the literature. Furthermore, we obtain the minimum possible subthreshold swing for different ferroelectric materials used in the gate stack of an NC-FET in the context of a manufacturable semiconductor technology. Our results are presented in the form of a table, which shows the calculated channel doping, ferroelectric thickness and minimum subthreshold for five different ferroelectric materials.
    $ {\rm{SS}} \equiv \frac{{\partial {V_{{\rm{GS}}}}}}{{\partial \left( {{\rm{lo}}{{\rm{g}}_{10}}{I_{\rm{D}}}} \right)}} = \frac{{\partial {V_{{\rm{GS}}}}}}{{\partial {V_{{\rm{GMOS}}}}}} \times \frac{{\partial {V_{{\rm{GMOS}}}}}}{{\partial \left( {{\rm{lo}}{{\rm{g}}_{10}}{I_{\rm{D}}}} \right)}} = m \times n. $ (1)

    View in Article

    $ m = \frac{{\partial {V_{{\rm{GS}}}}}}{{\partial {V_{{\rm{GMOS}}}}}} = {1 + \frac{{{C_{{\rm{MOS}}}}}}{{{C_{{\rm{FE}}}}}}} , $ (2)

    View in Article

    $ E = \frac{{{V_{\rm FE}}\left( Q \right)}}{{{t_{\rm FE}}}} = 2\alpha Q + 4\beta {Q^3} + 6\gamma {Q^5}, $ (3)

    View in Article

    $ {V_{{\rm{GS}}}} = {V_{{\rm{FE}}}} + {V_{{\rm{GMOS}}}}, $ (4)

    View in Article

    $ C_{{\rm{FE}}}^{ - 1}\left( Q \right) = \left( {2\alpha + 12\beta {Q^2} + 30\gamma {Q^4}} \right) {t_{{\rm{FE}}}}. $ (5)

    View in Article

    $ C_{\rm{T}}^{ - 1}\left( Q \right) = C_{{\rm{MOS}}}^{ - 1}\left( Q \right) + C_{{\rm{FE}}}^{ - 1}\left( Q \right). $ (6)

    View in Article

    $ {C_{{\rm{MOS}}}}{\left( Q \right)^{ - 1}} \geqslant |{C_{{\rm{FE}}}}^{ - 1}\left( Q \right)|, $ (7)

    View in Article

    $ {\psi _{\rm{S}}} = \frac{{{Q^2}}}{{2q{\varepsilon _0}{\varepsilon _{\rm{s}}}{N_{\rm A}}}}, $ (8)

    View in Article

    $ \frac{1}{{{C_{{\rm{MOS}}}}}} = \sqrt {\frac{{{v_{\rm{t}}}}}{{q{\varepsilon _0}{\varepsilon _{\rm{s}}}{N_{\rm{A}}}}}} + \frac{1}{{{C_{{\rm{OX}}}}}}, $ (9)

    View in Article

    $ {t_{{\rm{FE}}}} = - \frac{1}{{2\alpha }}\left[ {\frac{1}{{{C_{{\rm{OX}}}}}} + \sqrt {\frac{{{v_{\rm{t}}}}}{{q{\varepsilon _0}{\varepsilon _{\rm{s}}}{N_{\rm{A}}}}}} } \right], $ (10)

    View in Article

    $ {N_{\rm{A}}} = \frac{{Q_1^2}}{{2q{\varepsilon _0}{\varepsilon _{\rm{s}}}l{\psi _{\rm{B}}}}}. $ (11)

    View in Article

    ${t_{{\rm{FE}}}} = - \frac{1}{{2\alpha }}\left[ {\frac{1}{{{C_{{\rm{OX}}}}}} + \sqrt {\frac{{2{v_{\rm{t}}}2{\psi _{\rm{B}}}}}{{Q_1^2}}} } \right]. $ (12)

    View in Article

    $\alpha = \frac{{3\sqrt 3 }}{4}\frac{{{E_{\rm{c}}}}}{{{P_0}}},\;\;\beta = \frac{{3\sqrt 3 }}{8}\frac{{{E_{\rm{c}}}}}{{P_0^3}}. $ (13)

    View in Article

    $ {t_{{\rm{FE}}}} = \frac{2}{{3\sqrt 3 }}\frac{{{P_0}}}{{{E_{\rm{c}}}}}\left( {\frac{1}{{{C_{{\rm{OX}}}}}} + \sqrt {\frac{{2{v_{\rm{t}}}2{\psi _{\rm{B}}}}}{{Q_1^2}}} } \right), $ (14)

    View in Article

    $ {C_{{\rm{FE}}}} = \frac{1}{{2\alpha {t_{{\rm{FE}}}}}} = - \frac{2}{{3\sqrt 3 }}\frac{{{P_0}}}{{{E_{\rm{C}}}{t_{{\rm{FE}}}}}}. $ (15)

    View in Article

    $ {S_{{\rm{min}}}} \approx \frac{{2.3{k_{\rm{B}}}T}}{q}\left( {1 + M \times {t_{{\rm{FE}}}}} \right), $ (16)

    View in Article

    Raheela Rasool, Najeeb-ud-Din, G. M. Rather. Analytical model for the effects of the variation of ferrolectric material parameters on the minimum subthreshold swing in negative capacitance capacitor[J]. Journal of Semiconductors, 2019, 40(12): 122401
    Download Citation