• Laser & Optoelectronics Progress
  • Vol. 59, Issue 9, 0922002 (2022)
Nan Lin1、2、*, Wenhe Yang1、2, Yunyi Chen1、2, Xin Wei1、2, Cheng Wang2, Jiaoling Zhao2, Yujie Peng2, and Yuxin Leng2、**
Author Affiliations
  • 1School of Microelectronics, Shanghai University, Shanghai 200072, China
  • 2Department of Precision Optics Engineering, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800, China
  • show less
    DOI: 10.3788/LOP202259.0922002 Cite this Article Set citation alerts
    Nan Lin, Wenhe Yang, Yunyi Chen, Xin Wei, Cheng Wang, Jiaoling Zhao, Yujie Peng, Yuxin Leng. Research Progress and Development Trend of Extreme Ultraviolet Lithography Source[J]. Laser & Optoelectronics Progress, 2022, 59(9): 0922002 Copy Citation Text show less
    References

    [1] Moore G E. The future of integrated electronics[EB/OL]. https://www.computerhistory.org/collections/catalog/102770836

    [2] Rayleigh J W S[M]. The theory of sound(1945).

    [3] Li Y Q. Lithography tool evolution and the trend of its development[J]. Microfabrication Technology, 1-5, 11(2003).

    [4] Lou Q H, Yuan Z J, Zhang H B. The history and current status of lithography[J]. Science, 69, 32-36(2017).

    [5] Blumenstock G M, Meinert C, Farrar N R et al. Evolution of light source technology to support immersion and EUV lithography[J]. Proceedings of SPIE, 5645, 188-195(2005).

    [6] Levinson H J[M]. Principles of lithography(2005).

    [7] Lin B J. The future of subhalf-micrometer optical lithography[J]. Microelectronic Engineering, 6, 31-51(1987).

    [8] van Schoot J, Troost K, Bornebroek F et al. High-NA EUV lithography enabling Moore’s law in the next decade[J]. Proceedings of SPIE, 10450, 104500U(2017).

    [9] Fomenkov I. EUV source for lithography in HVM: performance and prospects[EB/OL]. https://www.euvlitho.com/2019/S1.pdf

    [10] Brandt D C, Fomenkov I V, Graham M. Performance and availability of EUV sources in high volume manufacturing on multiple nodes in the field and advances in source power[J]. Proceedings of SPIE, 11854, 118540J(2021).

    [11] Kong J. Netherlands ASML bid $2.6 billion for Cymer[EB/OL]. https://finance.qq.com/a/20121017/006391.htm

    [12] ASML. EUV Lithography Systems TWINSCAN NXE 3600D[EB/OL]. https://www.asml.com/en/products/euv-lithography-systems/twinscan-nxe-3600d

    [13] Mizoguchi H, Tomuro H, Nishimura Y et al. Update of >300 W high power LPP-EUV source challenge IV for semiconductor HVM[J]. Proceedings of SPIE, 11854, 118540K(2021).

    [14] Mainfray G, Manus G. Multiphoton ionization of atoms[J]. Reports on Progress in Physics, 54, 1333-1372(1991).

    [15] Johnston T W, Dawson J M. Correct values for high-frequency power absorption by inverse bremsstrahlung in plasmas[J]. The Physics of Fluids, 16, 722(1973).

    [16] Wannier G H[M]. Statistical physics, 197-203(1987).

    [17] Nishimura H, Fujioka S, Shimomura M et al. Development of extreme-ultraviolet light source by laser-produced plasma[J]. The Review of Laser Engineering, 36, 1125-1128(2008).

    [18] Brandt D C, Fomenkov I V, Ershov A I et al. LPP source system development for HVM[J]. Proceedings of SPIE, 7271, 40-49(2009).

    [19] Fomenkov I. EUV source for lithography: readiness for HVM and outlook for increase in power and availability[EB/OL]. https://www.euvlitho.com/2018/S1.pdf

    [20] Rollinger B. Droplet target for laser-produced plasma light sources[D](2012).

    [21] Poirier M, Blenski T, de Gaufridy de Dortan F et al. Modeling of EUV emission from xenon and tin plasma sources for nanolithography[J]. Journal of Quantitative Spectroscopy and Radiative Transfer, 99, 482-492(2006).

    [22] van de Kerkhof M A, Liu F, Meeuwissen M et al. Spectral purity performance of high-power EUV systems[J]. Proceedings of SPIE, 11323, 1132321(2020).

    [23] Mizoguchi H, Nakarai H, Abe T et al. High power LPP-EUV source with long collector mirror lifetime for high volume semiconductor manufacturing[C], 17805561(2018).

    [24] Brandt D C, Purvis M, Fomenkov I et al. Advances toward high power EUV sources for EUVL scanners for HVM in the next decade and beyond[J]. Proceedings of SPIE, 11609, 116091E(2021).

    [25] Bakshi V[M]. EUV lithography(2018).

    [26] Aota T, Nakai Y, Fujioka S et al. Characterization of extreme ultraviolet emission from tin-droplets irradiated with Nd∶YAG laser plasmas[J]. Journal of Physics: Conference Series, 112, 042064(2008).

    [27] Ando T, Fujioka S, Nishimura H et al. Optimum laser pulse duration for efficient extreme ultraviolet light generation from laser-produced tin plasmas[J]. Applied Physics Letters, 89, 151501(2006).

    [28] Harilal S S, Tillack M S, Tao Y et al. Extreme-ultraviolet spectral purity and magnetic ion debris mitigation by use of low-density tin targets[J]. Optics Letters, 31, 1549-1551(2006).

    [29] Banine V Y, Koshelev K N, Swinkels G M. Physical processes in EUV sources for microlithography[J]. Journal of Physics D: Applied Physics, 44, 253001(2011).

    [30] Zong N, Hu W M, Wang Z M et al. Research progress on laser-produced plasma light source for 13.5 nm extreme ultraviolet lithography[J]. Chinese Optics, 13, 28-42(2020).

    [31] Wu H P. Evaluation and applied analysis of laser beam quality[J]. Optics and Precision Engineering, 8, 128-132(2000).

    [32] Endo A, Abe T, Hoshino H et al. CO2 laser-produced Sn plasma as the solution for high-volume manufacturing EUV lithography[J]. Proceedings of SPIE, 6703, 55-62(2007).

    [33] Endo A, Komori H, Ueno Y et al. Laser-produced plasma source development for EUV lithography[C], 7271, 86-92(2009).

    [34] Niimi G, Nagai S, Hori T et al. Update of development progress of the high power LPP-EUV light source using a magnetic field[J]. Proceedings of SPIE, 11323, 1132328(2020).

    [35] Michael P. An introduction to EUV sources for lithography[EB/OL], 2020-1. https://strobe.colorado.edu/wp-content/uploads/STROBE_

    [36] Yang Z H. Electric-optically Q-switched and cavity-dumped RF waveguide CO2 laser[D](2005).

    [37] Zhou D D, Yin X L, Wang Y et al. High-efficiency electro-optical cavity-dumped Q-switched laser pumped by LD at 914 nm[J]. Chinese Journal of Lasers, 45, 0101014(2018).

    [38] Zhang R R. Study on technology of short pulse CO2 laser amplification and noise isolation[D]. Changchun: Changchun Institute of Optics, Fine Mechanics and Physics(2021).

    [39] Nowak K, Ohta T, Suganuma T et al. CO2 laser drives extreme ultraviolet nano-lithography: second life of mature laser technology[J]. Opto-Electronics Review, 21, 345-354(2013).

    [40] Mizoguchi H, Nakarai H, Abe T et al. Performance of one hundred watt HVM LPP-EUV source[J]. Proceedings of SPIE, 9422, 94220C(2015).

    [41] Zhang Z H. Numerical and experimental study of high power acousto-optically Q-switched CO2 laser[D](2017).

    [42] Hu Z. Study on the gain properties of fast axial flow CO2 laser amplifier[D](2015).

    [43] Yi X Y. Research of CO2 laser MOPA system[D](2013).

    [44] Huang H Y. The simulation and optimization of the gas flow field and heat exchanging of the high power fast axial flow CO2 laser[D](2011).

    [45] Polyanskiy M N, Babzien M, Pogorelsky I V. Chirped-pulse amplification in a CO2 laser[J]. Optica, 2, 675-681(2015).

    [46] Feldman B J. Multiline short pulse amplification and compression in high gain CO2 laser amplifiers[J]. Optics Communications, 14, 13-16(1975).

    [47] Baeva M G, Atanasov P A. Numerical investigation of CW CO2 laser with a fast turbulent flow[J]. Journal of Physics D: Applied Physics, 26, 546-551(1993).

    [48] Muller S, Uhlenbusch J. Influence of turbulence and convection on the output of a high-power CO2 laser with a fast axial flow[J]. Journal of Physics D: Applied Physics, 20, 697-708(1987).

    [49] Park D, Jeong J, Yu T J. Optimization of the pulse width and injection time in a double-pass laser amplifier[J]. High Power Laser Science and Engineering, 6, e60(2018).

    [50] Jeong J, Cho S, Yu T J. Numerical extension of Frantz-Nodvik equation for double-pass amplifiers with pulse overlap[J]. Optics Express, 25, 3946-3953(2017).

    [51] Frantz L M, Nodvik J S. Theory of pulse propagation in a laser amplifier[J]. Journal of Applied Physics, 34, 2346-2349(1963).

    [52] Brunet H. Saturation of infrared absorption in SF6[J]. IEEE Journal of Quantum Electronics, 6, 678-684(1970).

    [53] Huang P, Houver S, Berger C et al. Saturable absorption in multilayer epitaxial graphene driven by mid-infrared quantum cascade lasers[C], 17259274(2017).

    [54] Hercher M. An analysis of saturable absorbers[J]. Applied Optics, 6, 947-954(1967).

    [55] He J L, Hou W, Zhang H L et al. 8.8 W green laser by intracavity frequency doubling of a LD pumped Nd∶YVO4 laser[J]. Chinese Journal of Lasers, 27, 481-484(2000).

    [56] Schriever G, Mager S, Naweed A et al. Laser-produced lithium plasma as a narrow-band extended ultraviolet radiation source for photoelectron spectroscopy[J]. Applied Optics, 37, 1243-1248(1998).

    [57] Nagano A, Inoue T, Nica P E et al. Extreme ultraviolet source using a forced recombination process in lithium plasma generated by a pulsed laser[J]. Applied Physics Letters, 90, 151502(2007).

    [58] Chen H. Studies on characteristics of ion debris and extreme ultraviolet emission in laser produced tin droplet plasma[D](2015).

    [59] Rajyaguru C, Higashiguchi T, Koga M et al. Parametric optimization of a narrow-band 13.5-nm emission from a Li-based liquid-jet target using dual nano-second laser pulses[J]. Applied Physics B, 80, 409-412(2005).

    [60] Higashiguchi T, Kawasaki K, Sasaki W et al. Enhancement of extreme ultraviolet emission from a lithium plasma by use of dual laser pulses[J]. Applied Physics Letters, 88, 161502(2006).

    [61] Shen Y F, Gao C, Zeng J L. A theoretical study of EUV emission spectra of Xe10+ ions[J]. Journal of Atomic and Molecular Physics, 24, 36-38(2007).

    [62] Ueno Y, Ariga T, Soumagne G et al. Efficient extreme ultraviolet plasma source generated by a CO2 laser and a liquid xenon microjet target[J]. Applied Physics Letters, 90, 191503(2007).

    [63] Sasaki A, Nishihara K, Murakami M et al. Effect of the satellite lines and opacity on the extreme ultraviolet emission from high-density Xe plasmas[J]. Applied Physics Letters, 85, 5857-5859(2004).

    [64] Kalmykov S G, Butorin P S, Sasin M E. Xe laser-plasma EUV radiation source with a wavelength near 11 nm: optimization and conversion efficiency[J]. Journal of Applied Physics, 126, 103301(2019).

    [65] White J, Hayden P, Dunne P et al. Simplified modeling of 13.5 nm unresolved transition array emission of a Sn plasma and comparison with experiment[J]. Journal of Applied Physics, 98, 113301(2005).

    [66] Tomie T, Aota T, Ueno Y et al. Use of tin as a plasma source material for high conversion efficiency[J]. Proceedings of SPIE, 5037, 147-155(2003).

    [67] Tao Y, Nishimura H, Okuno T et al. Dynamic imaging of 13.5 nm extreme ultraviolet emission from laser-produced Sn plasmas[J]. Applied Physics Letters, 87, 241502(2005).

    [68] Harilal S S, Sizyuk T, Sizyuk V et al. Efficient laser-produced plasma extreme ultraviolet sources using grooved Sn targets[J]. Applied Physics Letters, 96, 111503(2010).

    [69] Cummins T, O’Gorman C, Dunne P et al. Colliding laser-produced plasmas as targets for laser-generated extreme ultraviolet sources[J]. Applied Physics Letters, 105, 044101(2014).

    [70] Fomenkov I. EUV source for high volume manufacturing: performance at 250 W and key technologies for power scaling[EB/OL]. https://www.euvlitho.com/2017/S1.pdf

    [71] Brandt D C, Fomenkov I V, Farrar N R et al. CO2/Sn LPP EUV sources for device development and HVM[J]. Proceedings of SPIE, 8679, 396-403(2013).

    [72] Hu L, She L, Fang Y S et al. Deformation characteristics of droplet generated by Rayleigh jet breakup[J]. AIP Advances, 11, 045310(2021).

    [73] Cordero M L, Gallaire F, Baroud C N. Quantitative analysis of the dripping and jetting regimes in co-flowing capillary jets[J]. Physics of Fluids, 23, 094111(2011).

    [74] Dong H M, Carr W W, Morris J F. An experimental study of drop-on-demand drop formation[J]. Physics of Fluids, 18, 072102(2006).

    [75] Furbank R J, Morris J F. An experimental study of particle effects on drop formation[J]. Physics of Fluids, 16, 1777-1790(2004).

    [76] Frohn A, Roth N[M]. Dynamics of droplets, 63-83(2000).

    [77] Vinokhodov A, Krivokorytov M, Sidelnikov Y et al. Stable droplet generator for a high brightness laser produced plasma extreme ultraviolet source[J]. The Review of Scientific Instruments, 87, 103304(2016).

    [78] Hudgins D. Advanced irradiation schemes for target shaping in droplet-based laser-produced plasma light sources[D](2019).

    [79] Pirati A, Peeters R, Smith D et al. EUV lithography performance for manufacturing: status and outlook[J]. Proceedings of SPIE, 9776, 97760A(2016).

    [80] Brandstätter M, Weber M M, Abhari R S. Non-axisymmetric droplet irradiation effects on ion and extreme ultraviolet light emission of laser-produced plasma light sources[J]. Journal of Applied Physics, 129, 233306(2021).

    [81] Wu W J. The study of extreme ultraviolet and soft X-ray narrowband multilayers[D](2007).

    [82] DuMond J, Youtz J P. An X-ray method of determining rates of diffusion in the solid state[J]. Journal of Applied Physics, 11, 357-365(1940).

    [83] Spiller E. Low-loss reflection coatings using absorbing materials[J]. Applied Physics Letters, 20, 365-367(1972).

    [84] Underwood J H, Barbee T W. Soft X-ray imaging with a normal incidence mirror[J]. Nature, 294, 429-431(1981).

    [85] Louis E, Yakshin A E, Tsarfati T et al. Nanometer interface and materials control for multilayer EUV-optical applications[J]. Progress in Surface Science, 86, 255-294(2011).

    [86] Stearns D G, Rosen R S, Vernon S P. High-performance multilayer mirrors for soft X-ray projection lithography[J]. Proceedings of SPIE, 1547, 2-13(1992).

    [87] Yan P Y, Spiller E, Mirkarimi P. Characterization of ruthenium thin films as capping layer for extreme ultraviolet lithography mask blanks[J]. Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures, 25, 1859-1866(2007).

    [88] Stuik R, Louis E, Yakshin A E et al. Peak and integrated reflectivity, wavelength and gamma optimization of Mo/Si, and Mo/Be multilayer, multielement optics for extreme ultraviolet lithography[J]. Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures, 17, 2998-3002(1999).

    [89] Frank F C, van der Merwe J H. One-dimensional dislocations. I. static theory[J]. Proceedings of the Royal Society of London Series A Mathematical and Physical Sciences, 198, 205-216(1949).

    [90] Stranski I N, Krastanow L. Zur theorie der orientierten ausscheidung von ionenkristallen aufeinander[J]. Monatshefte Für Chemie Und Verwandte Teile Anderer Wissenschaften, 71, 351-364(1937).

    [91] Ohering M[M]. Materials science of thin films: deposition and structure(2002).

    [92] Schwoebel R L, Shipsey E J. Step motion on crystal surfaces[J]. Journal of Applied Physics, 37, 3682-3686(1966).

    [93] Louis E, Voorma H J, Koster N B et al. Enhancement of reflectivity of multilayer mirrors for soft X-ray projection lithography by temperature optimization and ion bombardment[J]. Microelectronic Engineering, 23, 215-218(1994).

    [94] Louis E, van Hattum E D, van der Westen S A et al. High reflectance multilayers for EUVL HVM-projection optics[J]. Proceedings of SPIE, 7636, 76362T(2010).

    [95] Yakshin A E, van de Kruijs R W E, Nedelcu I et al. Enhanced reflectance of interface engineered Mo/Si multilayers produced by thermal particle deposition[J]. Proceedings of SPIE, 6517, 158-166(2007).

    [96] Qiu Q Q, Li Q F, Su J J et al. Influence of operating parameters on target erosion of rectangular planar DC magnetron[J]. IEEE Transactions on Plasma Science, 36, 1899-1906(2008).

    [97] Yu B, Jin C S, Yao S et al. Control of lateral thickness gradients of Mo–Si multilayer on curved substrates using genetic algorithm[J]. Optics Letters, 40, 3958-3961(2015).

    [98] Yu B. Study on the thickness gradient control and anti-thermal damage for EUV multilayers[D]. Changchun: Changchun Institute of Optics, Fine Mechanics and Physics(2016).

    [99] Wang H J. Research on laser-produced plasma source with output wavelength shorter than 15 nm[D](2020).

    [100] Sizyuk T, Hassanein A. Optimization of extreme ultraviolet photons emission and collection in mass-limited laser produced plasmas for lithography application[J]. Journal of Applied Physics, 112, 033102(2012).

    [101] Lan H. Research on the characteristics of laser produced Sn and SnO2 plasma[D](2016).

    [102] Sizyuk T. Consequences of high-frequency operation on EUV source efficiency[J]. Physics of Plasmas, 24, 083105(2017).

    [103] Fomenkov I, Brandt D, Ershov A et al. Light sources for high-volume manufacturing EUV lithography: technology, performance, and power scaling[J]. Advanced Optical Technologies, 6, 173-186(2017).

    [104] Mizoguchi H, Nakarai H, Abe T et al. Challenge of high power LPP-EUV source with long collector mirror lifetime for semiconductor HVM[J]. Proceedings of SPIE, 11147, 1114705(2019).

    [105] Rimbert N, Escobar S C, Meignen R et al. Spheroidal droplet deformation, oscillation and breakup in uniform outer flow[J]. Journal of Fluid Mechanics, 904, A15(2020).

    [106] Tomie T. Tin laser-produced plasma as the light source for extreme ultraviolet lithography high-volume manufacturing: history, ideal plasma, present status, and prospects[J]. Nanolithography, MEMS, and MOEMS, 11, 021109(2012).

    [107] Hassanein A, Sizyuk T. Laser produced plasma sources for nanolithography: recent integrated simulation and benchmarking[J]. Physics of Plasmas, 20, 053105(2013).

    [108] Benoit N, Yulin S, Feigl T et al. Radiation stability of EUV Mo/Si multilayer mirrors[J]. Physica B: Condensed Matter, 357, 222-226(2005).

    [109] Xu X D, Zhou H J, Hong Y L et al. Cleaning of contaminated optics devices by synchrotron radiation[J]. Vacuum science and technology, 20, 114-119(2000).

    [110] Song Y. Research on atomic hydrogen cleaning carbon contaminations on EUV multilayer[D]. Changchun: Changchun Institute of Optics, Fine Mechanics and Physics(2017).

    [111] Harilal S S, O’Shay B, Tao Y et al. Ion debris mitigation from tin plasma using ambient gas, magnetic field and combined effects[J]. Applied Physics B, 86, 547-553(2007).

    [112] Graham S, Steinhaus C A, Clift W M et al. Atomic hydrogen cleaning of EUV multilayer optics[J]. Proceedings of SPIE, 5037, 460-469(2003).

    [113] Bajt S, Chapman H N, Nguyen N et al. Design and performance of capping layers for EUV multilayer mirrors[J]. Proceedings of SPIE, 5037, 236-248(2003).

    [114] Yulin S, Benoit N, Feigl T et al. Mo/Si multilayers with enhanced TiO2- and RuO2-capping layers[J]. Proceedings of SPIE, 6921, 692118(2008).

    [115] Dou Y P, Sun C K, Lin J Q. Laser-produced plasma light source for extreme ultraviolet lithography[J]. Chinese Optics, 6, 20-33(2013).

    [116] Leng Y X, Wang S, Zhao Q Z et al. Droplet target control system guided by laser beam[P].

    [117] Brandstätter M. Debris emission and mitigation of droplet-based laser-produced plasma sources[D](2020).

    [119] Niu J. Precise adjustment and control of the resonator for high power transverse flow CO2 laser[D](2013).

    [120] Pan Q K, Guo J, Chen F et al. Laser power stabilizing method and laser power amplifying system[P].

    [121] Pan Q K, Guo J, Chen F et al. Dual-wavelength laser coaxial output system and method[P].

    [122] Li X P, Yu D Y, Guo J et al. Study on beam pointing stability of extreme ultraviolet lithography light source system[J]. Laser & Optoelectronics Progress, 58, 1714004(201).

    [123] Sun H Y, Wang C, Wang G D et al. A Melting droplet generating device for EUV light source[P].

    [124] Sun H Y, Wang C, Leng Y X et al. An integrated tin filling system for Droplet target in EUV light source[P].

    [125] Yin P Q, Wang X B, Wu Y X et al. Experimental study on water droplet plasma induced by pulse Nd∶YAG laser[J]. Laser Technology, 44, 726-731(2020).

    [126] Sun Q, Tian L C, Wu Y X et al. Research on the characteristics of laser produced tin plasma by using Langmuir probe[J]. Laser Technology, 45, 109-114(2021).

    [127] Qi L H, Luo J, Li L et al. Simulation and experiment research of the uniform droplet spray process[J]. Chinese Journal of Mechanical Engineering, 44, 86-92(2008).

    [128] Xiao Y, Qi L H, Zeng X H et al. Uniform metal droplet produced by pneumatic generator with controlled spray process and analysis of the droplet deposition accuracy[J]. Journal of Mechanical Engineering, 47, 156-160(2011).

    [129] Wang Z S, Huang Q S, Zhang Z et al. Extreme ultraviolet, X-ray and neutron thin film optical components and systems[J]. Acta Optica Sinica, 41, 0131001(2021).

    [131] Wang X, Jin C S, Li C et al. Preparation and characteristic of oxide capping-layer on extreme ultraviolet reflective mirrors[J]. Acta Optica Sinica, 35, 0331001(2015).

    [132] Sun S Z, Jin C S, Yu B et al. Reflection and resputtering of Mo/Si atoms during high-energy deposition[J]. Acta Optica Sinica, 40, 1102001(2020).

    [133] Sun S Z, Jin C S, Yu B et al. Research on surface roughness related coating processes of Mo/Si multilayers[J]. Acta Optica Sinica, 40, 1031002(2020).

    Nan Lin, Wenhe Yang, Yunyi Chen, Xin Wei, Cheng Wang, Jiaoling Zhao, Yujie Peng, Yuxin Leng. Research Progress and Development Trend of Extreme Ultraviolet Lithography Source[J]. Laser & Optoelectronics Progress, 2022, 59(9): 0922002
    Download Citation