• Laser & Optoelectronics Progress
  • Vol. 59, Issue 9, 0922018 (2022)
Hongxing Yang1、2, Haijin Fu1、2, Pengcheng Hu1、2、*, Ruitao Yang1、2, Xu Xing1、2, Liang Yu1、2, Di Chang1、2, and Jiubin Tan1、2
Author Affiliations
  • 1Institute of Ultra-Precision Optoelectronic Instrument Engineering, Harbin Institute of Technology, Harbin 150080, Heilongjiang , China
  • 2Key Laboratory of Ultra-Precision Intelligent Instrumentation, Ministry of Industry and Information Technology, Harbin Institute of Technology, Harbin 150080, Heilongjiang , China
  • show less
    DOI: 10.3788/LOP202259.0922018 Cite this Article Set citation alerts
    Hongxing Yang, Haijin Fu, Pengcheng Hu, Ruitao Yang, Xu Xing, Liang Yu, Di Chang, Jiubin Tan. Ultra-Precision and High-Speed Laser Interferometric Displacement Measurement Technology and Instrument[J]. Laser & Optoelectronics Progress, 2022, 59(9): 0922018 Copy Citation Text show less
    References

    [1] Wang Y. Periodic nonlinear error suppression and measurement of heterodyne laser interferometer with separated beams[D], 8-25(2021).

    [2] Hu P C, Wang Y, Fu H J et al. Nonlinearity error in homodyne interferometer caused by multi-order Doppler frequency shift ghost reflections[J]. Optics Express, 25, 3605-3612(2017).

    [3] Fu H J, Wang Y, Hu P C et al. Nonlinear errors resulting from ghost reflection and its coupling with optical mixing in heterodyne laser interferometers[J]. Sensors, 18, 758(2018).

    [4] Tan J B, Hu P C, Diao X F. High speed high resolution heterodyne interferometric method and system[P/OL]. http://www.google.co.in/patents/US9587927B29

    [5] Diao X F, Hu P C, Xue Z et al. High-speed high-resolution heterodyne interferometer using a laser with low beat frequency[J]. Applied Optics, 55, 110-116(2016).

    [6] Diao X F. Study on high speed heterodyne interferometer with spatially separated beams[D], 26-40(2014).

    [7] Hu P C, Lu Z G, Zou L M[M]. Precision laser measurement technology and system(2015).

    [8] Hu P C. Study of frequency stabilization in ultra-precision displacement measurement with laser heterodyne interferometer[D], 8-25(2007).

    [9] Lu W, Ding X M, Hu P C et al. The method of warm-up control base on PFC algorithm applied in the longitudinal Zeeman thermal compensated frequency stabilization system[J]. Journal of Optoelectronics·Laser, 18, 51-54(2007).

    [10] Diao X F, Tan J B, Hu P C et al. Frequency stabilization of an internal mirror He-Ne laser with a high frequency reproducibility[J]. Applied Optics, 52, 456-460(2013).

    [11] Yang H X. Research on frequency stabilization of double longitudinal He-Ne laser by digital control[D], 13-35(2007).

    [12] Yin Z Q. Research on separated-type dual-frequency stabilized laser based on integrated water-cooling method for reducing noises[D], 16-37(2018).

    [13] Bai Y. Research on technology of frequency stabilized laser with piezoelectric control system based on iodine molecular optical frequency standard[D], 19-51(2013).

    [14] Yang H X, Yang R T, Hu P C et al. Ultrastable offset-locked frequency-stabilized heterodyne laser source with water cooling[J]. Applied Optics, 56, 9179-9185(2017).

    [15] Hu P C, Tan J B B, Yang H X X et al. Recent developments in heterodyne laser interferometry at Harbin Institute of Technology[J]. Proceedings of SPIE, 8759, 1-9(2013).

    [16] Qi C Y. Research on large frequency difference splitting and frequency stabilization technology of longitudinal Zeeman laser[D], 19-51(2019).

    [17] Fu H J. Study on laser polarization state measurement and beam combination method in two-frequency laser with large frequency difference[D], 54-88(2012).

    [18] Huang K Q. Research on dual-source locked dual-frequency laser[D], 29-56(2017).

    [19] Yang H X, Yin Z Q, Yang R T et al. Design for A highly stable laser source based on the error model of high-speed high-resolution heterodyne interferometers[J]. Sensors, 20, 1083(2020).

    [20] Hu P C, Chen P, Ding X M et al. Balanced plane-mirror heterodyne interferometer with subnanometer periodic nonlinearity[J]. Applied Optics, 53, 5448-5451(2014).

    [21] Wang Y, Hu P C, Fu H J et al. Periodic nonlinear error and its compensation method in heterodyne laser interferometer[J]. Journal of Harbin Institute of Technology, 52, 126-133(2020).

    [22] Fu H J, Wu G L, Hu P C et al. Highly thermal-stable heterodyne interferometer with minimized periodic nonlinearity[J]. Applied Optics, 57, 1463-1467(2018).

    [23] Fu H J, Wu G L, Hu P C et al. Thermal drift of optics in separated-beam heterodyne interferometers[J]. IEEE Transactions on Instrumentation and Measurement, 67, 1446-1450(2018).

    [24] Wu G L. Method of restrain and measurement of thermal drift of optics in heterodyne interferometer with separated-beams[D], 54-88(2020).

    [25] Hu P C, Su X B, Fu H J. Heterodyne laser interferometer based on integrated secondary beam splitting component[P/OL]. http://www.google.co.in/patents/US11150077B2

    [26] Wu W S. Research on multi-axis high-speed and ultra-precision laser heterodyne interferometer signal real-time process technology[D], 14-38(2012).

    [27] Cai H J. Research on picometer resolution phase subdivision for heterodyne laser interference signals[D], 24-39(2015).

    [28] Zhao J L. Key technology of signal procession in laser heterodyne interferometry with Pico meter resolution[D], 7-48(2016).

    [29] Chang D, Wang J N, Hu P C et al. Zoom into picometer: a picoscale equivalent phase-difference-generating method for testing heterodyne interferometers without ultraprecision stages[J]. Optical Engineering, 58, 064101(2019).

    [30] Yang H X, Zhu P F, Tan J B et al. High stable remote photoelectric receiver for interferometry[J]. The Review of Scientific Instruments, 88, 033105(2017).

    [31] Yang H X, Lu Y F, Hu P C et al. Measurement and control of the movable coil position of a joule balance with a system based on a laser heterodyne interferometer[J]. Measurement Science and Technology, 25, 064003(2014).

    [32] Bai Y. Research on relative position measuring methods of coils assembly in joule balance for mass quantum metrology[D], 38-78(2017).

    Hongxing Yang, Haijin Fu, Pengcheng Hu, Ruitao Yang, Xu Xing, Liang Yu, Di Chang, Jiubin Tan. Ultra-Precision and High-Speed Laser Interferometric Displacement Measurement Technology and Instrument[J]. Laser & Optoelectronics Progress, 2022, 59(9): 0922018
    Download Citation