• Journal of Semiconductors
  • Vol. 40, Issue 4, 042801 (2019)
Shuxin Tan1 and Takashi Egawa2
Author Affiliations
  • 1School of Electronics and Information, Nantong University, Nantong 226019, China
  • 2Research Center for Nano-Device and System, Nagoya Institute of Technology, Gokiso-cho, Showa-ku, Nagoya 466-8555, Japan
  • show less
    DOI: 10.1088/1674-4926/40/4/042801 Cite this Article
    Shuxin Tan, Takashi Egawa. Influence of growth conditions of oxide on electrical properties of AlGaN/GaN metal–insulator–semiconductor transistors[J]. Journal of Semiconductors, 2019, 40(4): 042801 Copy Citation Text show less
    References

    [1] A Acharyya. Hot electron transport in wurtzite-GaN: effects of temperature and doping concentration. J Semicond, 39, 072002(2018).

    [2] F Liang, D G Zhao, D S Jiang et al. Performance enhancement of the GaN-based laser diode by using an unintentionally doped GaN upper waveguide. Jpn J Appl Phys, 57, 070307(2018).

    [3] X Huang, C Du, Y Zhou et al. Piezo-phototronic effect in a quantum well structure. ACS Nano, 10, 5145(2016).

    [4] X Li, P Ma, X Ji et al. Implementation of slow and smooth etching of GaN by inductively coupled plasma. J Semicond, 39, 113002(2018).

    [5] A Tzou, K H Chu, I F Lin et al. AlN surface passivation of GaN-based high electron mobility transistors by plasma-enhanced atomic layer deposition. Nanoscale Res Lett, 12, 315(2017).

    [6] D Li, X Sun, H Song et al. Realization of a high-performance GaN UV detector by nanoplasmonic enhancement. Adv Mater, 24, 845(2012).

    [7] D G Zhao, J J Zhu, Z S Liu et al. Surface morphology of AlN buffer layer and its effect on the GaN growth by metalorganic vapor chemical deposition. Appl Phys Lett, 85, 1499(2004).

    [8] S Tan, X Deng, B Zhang et al. Thermal stability of F ion-implant isolated AlGaN/GaN heterostructures. Sci China-Phys Mech Astron, 61, 127311(2018).

    [9] S X Zhao, X Y Liu, L Q Zhang et al. Impacts of thermal atomic layer-deposited AlN passivation layer on GaN-on-Si high electron mobility transistors. Nanoscale Res Lett, 11, 137(2016).

    [10] G Meneghesso, M Meneghini, D Bisi et al. Trapping and reliability issues in GaN-based MIS HEMTs with partially recessed gate. Microelectron Reliab, 58, 151(2016).

    [11] P Lagger, P Steinschifter, M Reiner et al. Role of the dielectric for the charging dynamics of the dielectric/barrier interface in AlGaN/GaN based metal-insulator semiconductor structures under forward gate bias stress. Appl Phys Lett, 105, 033512(2014).

    [12] S Sugiura, S Kishimoto, T Mizutani et al. Normally-off AlGaN/GaN MOSFETs with HfO2 gate oxide. Phys Stat Sol C, 5, 1923(2008).

    [13] T Hashizume, S Anantathanasarn, N Negoro et al. Al2O3 insulated-gate structure for AlGaN/GaN heterostructure field effect transistors having thin AlGaN barrier layers. Jpn J Appl Phys, 43, L777(2004).

    [14] M Van Hove, X Kang, S Stoffels et al. Fabrication and performance of Au-free AlGaN/GaN-on-silicon power devices with Al2O3 and Si3N4/Al2O3 gate dielectrics. IEEE Trans Electron Devices, 60, 3071(2013).

    [15] T Liu, C Jiang, X Huang et al. Electrical transportation and piezotronic-effect modulation in AlGaN/GaN MOS HEMTs and unpassivated HEMTs. Nano Energy, 39, 53(2017).

    [16] H Y Shih, F C Chu, C Y Lee et al. Atomic layer deposition of gallium oxide films as gate dielectrics in AlGaN/GaN metal–oxide–semiconductor high-electron-mobility transistors. Nanoscale Res Lett, 11, 235(2016).

    [17] J Derluyn, S Boeykens, K Cheng et al. Improvement of AlGaN GaN high electron mobility transistor structures by in situ deposition of a Si3N4 surface layer. J Appl Phys, 98, 054501(2005).

    [18] J P Ao, K Nakatani, K Ohmuro et al. GaN metal–oxide–semiconductor field-effect transistor with tetraethylorthosilicate SiO2 gate insulator on AlGaN/GaN heterostructure. Jpn J Appl Phys, 49, 04DF09(2010).

    [19] M Asif Khan, X Hu, A Tarakji et al. AlGaN/GaN metal–oxide–semiconductor heterostructure field-effect transistors on SiC substrates. Appl Phys Lett, 77, 1339(2000).

    [20] C Liu, E F Chor, L S Tan. Investigations of HfO2/AlGaN/GaN metal–oxide–semiconductor high electron mobility transistors. Appl Phys Lett, 88, 173504(2006).

    [21] S Tan, S L Selvaraj, T Egawa. Metal–organic chemical vapor deposition of quasi-normally-off AlGaN/GaN filed-effect transistors on silicon substrates using low-temperature gown AlN cap layers. Appl Phys Lett, 97, 053502(2010).

    [22] N Ronchi, B De Jaeger, M Van Hove et al. Combined plasma-enhanced-atomic-layer-deposition gate dielectric and in situ SiN cap layer for reduced threshold voltage shift and dynamic ON-resistance dispersion of AlGaN/GaN high electron mobility transistors on 200 mm Si substrates. Jpn J Appl Phys, 54, 04DF02(2015).

    [23] J G Lee, H S Kim, K S Seo et al. High quality PECVD SiO2 process for recessed MOS-gate of AlGaN/GaN-on-Si metal–oxide–semiconductor heterostructure field-effect transistors. Solid State Electron, 122, 32(2015).

    [24] P Fiorenza, G Greco, F Iucolano et al. Slow and fast traps in metal–oxide–semiconductor capacitors fabricated on recessed AlGaN/GaN heterostructures. Appl Phys Lett, 106, 142903(2015).

    [25] X Sun, D Li, H Jiang et al. Improved performance of GaN metal–semiconductor–metal ultraviolet detectors by depositing SiO2 nanoparticles on a GaN surface. Appl Phys Lett, 98, 121117(2011).

    [26] G Dutta, N Das Gupta, A Das Gupta. Effect of sputtered-Al2O3 layer thickness on the threshold voltage of III-nitride MIS-HEMTs. IEEE Trans Electron Devices, 63, 1450(2016).

    [27] T Tuan, D H Kuo. Characteristics of RF reactive sputter-deposited Pt/SiO2/n-InGaN MOS Schottky diodes. Mater Sci Semicon Proc, 30, 314(2015).

    [28] C Xirouchaki, R E Palmer. Deposition of size-selected metal clusters generated by magnetron sputtering and gas condensation: a progress review. Phil Trans R Soc Lond A, 362, 117(2004).

    [29] N Maeda, M Hiroki, N Watanabe et al. Systematic study of insulator deposition effect (Si3N4, SiO2, AlN, and Al2O3) on electrical properties in AlGaN/GaN heterostructures. Jpn J Appl Phys, 46, 547(2007).

    [30] O Ambacher, J Majewski, C Miskys et al. Pyroelectric properties of Al(In)GaN/GaN hetero- and quantum well structures. J Phys: Condens Matter, 14, 3399(2002).

    [31] J J Zhu, X H Ma, Y Xie et al. Improved interface and transport properties of AlGaN/GaN MIS-HEMTs with PEALD-grown AlN gate dielectric. IEEE Trans Electron Devices, 62, 512(2015).

    [32] O Seok, W Ahn, M K Han et al. Effect of Ga2O3 sputtering power on breakdown voltage of AlGaN/GaN high-electron-mobility transistors. J Vac Sci Tech B, 31, 011203(2013).

    [33] S J Chang, C H Lan, J D Hwang et al. Sputtered indium-tin-oxide on p-GaN. J Electrochem Soc, 155, H140(2008).

    [34] R Stoklas, D Gregušová, Š Gaži et al. Performance of AlGaN/GaN metal–insulator–semiconductor heterostructure field-effect transistors with AlN gate insulator prepared by reactive magnetron sputtering. J Vac Sci Tech B, 29, 01A809(2011).

    Shuxin Tan, Takashi Egawa. Influence of growth conditions of oxide on electrical properties of AlGaN/GaN metal–insulator–semiconductor transistors[J]. Journal of Semiconductors, 2019, 40(4): 042801
    Download Citation