• Journal of Semiconductors
  • Vol. 42, Issue 6, 061801 (2021)
Run Tian1、2, Chao Ma3, Jingmin Wu1、2, Zhiyu Guo1、2, Xiang Yang1, and Zhongchao Fan1、4
Author Affiliations
  • 1Engineering Research Center for Semiconductor Integrated Technology, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China
  • 2College of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing 100049, China
  • 3University of Electronic Science and Technology of China, Chengdu 610054, China
  • 4School of Electronic, Electrical and Communication Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
  • show less
    DOI: 10.1088/1674-4926/42/6/061801 Cite this Article
    Run Tian, Chao Ma, Jingmin Wu, Zhiyu Guo, Xiang Yang, Zhongchao Fan. A review of manufacturing technologies for silicon carbide superjunction devices[J]. Journal of Semiconductors, 2021, 42(6): 061801 Copy Citation Text show less
    References

    [1] B J Baliga. Trends in power semiconductor devices. IEEE Trans Electron Devices, 43, 1717(1996).

    [2] A Q Huang. Power semiconductor devices for smart grid and renewable energy systems. J Proc IEEE, 105, 2019(2017).

    [3]

    [4]

    [5] H Tsuchida, I Kamata, T Jikimoto et al. Epitaxial growth of thick 4H-SiC layers in a vertical radiant-heating reactor. J Cryst Growth, 237–239, 1206(2002).

    [6] Y Onishi, S Iwamoto, T Sato et al. 24 mΩ·cm2 680 V silicon superjunction MOSFET. International Symposium on Power Semiconductor Devices and ICs, 241(2002).

    [7] W Saito, I Omura, S Aida et al. A 20 mΩ·cm2 600 V-class Superjunction MOSFET. International Symposium on Power Semiconductor Devices and ICs, 459(2004).

    [8] M Rub, M Bar, G Deboy et al. 550 V superjunction 3.9 Ω·mm2 transistor formed by 25 MeV masked boron implantation. International Symposium on Power Semiconductor Devices and ICs, 455(2004).

    [9]

    [10] S Iwamoto, K Takahashi, H Kuribayashi et al. Above 500 V class Superjunction MOSFETs fabricated by deep trench etching and epitaxial growth. International Symposium on Power Semiconductor Devices and ICs, 31(2005).

    [11] J Sakakibara, Y Noda, T Shibata et al. 600 V-class super junction MOSFET with high aspect ratio P/N columns structure. International Symposium on Power Semiconductor Devices and ICs, 299(2008).

    [12] F Udrea, G Deboy, T Fujihira. Superjunction power devices, history, development, and future prospects. IEEE Trans Electron Devices, 64, 713(2017).

    [13] Y Kobayashi, S Kyogoku, T Morimoto et al. High-temperature performance of 1.2 kV-class SiC super junction MOSFET. International Symposium on Power Semiconductor Devices and ICs, 31(2019).

    [14] R Kosugi, Y Sakuma, K Kojima et al. First experimental demonstration of SiC super-junction (SJ) structure by multi-epitaxial growth method. International Symposium on Power Semiconductor Devices and ICs, 346(2014).

    [15] M Rueb. Addressing production of SiC super-junction MOSFETs. J Compd Semicond, 25, 38(2019).

    [16] N Ishibashi, K Fukada, A Bandoh et al. High-quality 100/150 mm p-type 4H-SiC epitaxial wafer for high-voltage bipolar devices. Mater Sci Forum, 897, 55(2017).

    [17] R X Ding, Y T Yang, n R Han. Microtrenching effect of SiC ICP etching in SF6/O2 plasma. J Semicond, 30, 016001(2009).

    [18] C Han, Y Zhang, Q Song et al. An improved ICP etching for mesa-terminated 4H-SiC P –i –N diodes. IEEE Trans Electron Devices, 62, 1223(2015).

    [19] G M Beheim, L J Evans. Control of trenching and surface roughness in deep reactive ion etched 4H and 6H SiC. MRS Proc, 911, 0911(2006).

    [20] T Kimoto, T Yamamoto, Z Y Chen et al. 4H-SiC (11-20) epitaxial growth. Mater Sci Forum, 338–342, 189(2000).

    [21] Y Takeuchi, M Kataoka, T Kimoto et al. SiC migration enhanced embedded epitaxial (ME3) growth technology. Mater Sci Forum, 527–529, 251(2006).

    [22] T Kimoto, H Matsunami. Surface diffusion lengths of adatoms on 6H-SiC{0001} faces in chemical vapor deposition of SiC. J Appl Phys, 78, 3132(1995).

    [23] S Ji, K Kojima, R Kosugi et al. Influence of growth pressure on filling 4H-SiC trenches by CVD method. Jpn J Appl Phys, 55, 01AC04(2016).

    [24] S Ji, K Kojima, R Kosugi et al. Filling 4H-SiC trench towards selective epitaxial growth by adding HCl to CVD process. Appl Phys Express, 8, 065502(2015).

    [25] R Kosugi, S Ji, K Mochizuki et al. Strong impact of slight trench direction misalignment from [11-20] on deep trench filling epitaxy for SiC super-junction devices. Jpn J Appl Phys, 56, 04CR05(2017).

    [26] R Kosugi, Y Sakuma, K Kojima et al. Development of SiC super-junction (SJ) device by deep trench-filling epitaxial growth. Mater Sci Forum, 740–742, 785(2013).

    [27] K Kojima, A Nagata, S Ito et al. Filling of deep trench by epitaxial SiC growth. Mater Sci Forum, 742, 793(2013).

    [28] X Zhong, B Wang, K Sheng. Design and experimental demonstration of 1.35 kV SiC super junction Schottky diode. International Symposium on Power Semiconductor Devices and ICs, 231(2016).

    Run Tian, Chao Ma, Jingmin Wu, Zhiyu Guo, Xiang Yang, Zhongchao Fan. A review of manufacturing technologies for silicon carbide superjunction devices[J]. Journal of Semiconductors, 2021, 42(6): 061801
    Download Citation