• Chinese Optics Letters
  • Vol. 20, Issue 1, 011701 (2022)
Mingming Wan1, Shanshan Liang2、**, Xinyu Li3, Zhengyu Duan4, Jiebin Zou1, Jun Chen1、5, Jin Yuan6, and Jun Zhang7、*
Author Affiliations
  • 1School of Electronics and Information Technology, Sun Yat-sen University, Guangzhou 510006, China
  • 2National Innovation Center for Advanced Medical Devices, Shenzhen 518131, China
  • 3GBA Branch of Aerospace Information Research Institute, Chinese Academy of Sciences, Guangzhou 510530, China
  • 4School of Biomedical Engineering, Sun Yat-sen University, Guangzhou 510006, China
  • 5State Key Laboratory of Optoelectronic Materials and Technologies, School of Electronics and Information Technology, Sun Yat-sen University, Guangzhou 510275, China
  • 6State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510060, China
  • 7School of Artificial Intelligence, Guilin University of Electronic Technology, Guilin 541004, China
  • show less
    DOI: 10.3788/COL202220.011701 Cite this Article Set citation alerts
    Mingming Wan, Shanshan Liang, Xinyu Li, Zhengyu Duan, Jiebin Zou, Jun Chen, Jin Yuan, Jun Zhang. Dual-beam delay-encoded all fiber Doppler optical coherence tomography for in vivo measurement of retinal blood flow[J]. Chinese Optics Letters, 2022, 20(1): 011701 Copy Citation Text show less
    Cited By
    Article index updated: Aug. 22, 2023
    Citation counts are provided from Web of Science. The counts may vary by service, and are reliant on the availability of their data.
    The article is cited by 4 article(s) from Web of Science.
    Mingming Wan, Shanshan Liang, Xinyu Li, Zhengyu Duan, Jiebin Zou, Jun Chen, Jin Yuan, Jun Zhang. Dual-beam delay-encoded all fiber Doppler optical coherence tomography for in vivo measurement of retinal blood flow[J]. Chinese Optics Letters, 2022, 20(1): 011701
    Download Citation