• Laser & Optoelectronics Progress
  • Vol. 59, Issue 9, 0922029 (2022)
Zixin Liang, Yuanyuan Zhao, and Xuanming Duan*
Author Affiliations
  • Guangdong Provincial Key Laboratory of Optical Fiber Sensing and Communications, Institute of Photonics Technology, Jinan University, Guangzhou 511443, Guangdong , China
  • show less
    DOI: 10.3788/LOP202259.0922029 Cite this Article Set citation alerts
    Zixin Liang, Yuanyuan Zhao, Xuanming Duan. Principle and Technology of Laser Super-Diffraction Lithography[J]. Laser & Optoelectronics Progress, 2022, 59(9): 0922029 Copy Citation Text show less
    References

    [1] Wei Y Y[M]. Advanced lithography theory and application of VlSI(2016).

    [2] Yao H M, Hu S, Xing T W[M]. Optical projection exposure micro-nano machining technology(2006).

    [3] Ding K L, Xiao W J, Wu L Z. Organic photochemistry: the road to glory[J]. Acta Chimica Sinica, 75, 5-6(2017).

    [4] Okoroanyanwu U[M]. Chemistry and lithography(2010).

    [5] Wu Q[M]. Photolithography process near the diffraction limit(2020).

    [6] Kim W S, Jeong Y C, Park J K. Nanoparticle-induced refractive index modulation of organic-inorganic hybrid photopolymer[J]. Optics Express, 14, 8967-8973(2006).

    [7] Oliveira P W, Krug H, Müller P et al. Fabrication of GRIN-materials by photopolymerization of diffusion- controlled organic-inorganic nanocomposite materials[J]. MRS Proceedings, 435, 553-558(1996).

    [8] Pikulin A, Bityurin N. Spatial resolution in polymerization of sample features at nanoscale[J]. Physical Review B, 75, 195430(2007).

    [9] Wu B Q, Kumar A. Extreme ultraviolet lithography: a review[J]. Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures, 25, 1743-1761(2007).

    [10] Poonawala A, Milanfar P. OPC and PSM design using inverse lithography: a nonlinear optimization approach[J]. Proceedings of SPIE, 6154, 61543H(2006).

    [11] Granik Y. Fast pixel-based mask optimization for inverse lithography[J]. Journal of Micro/Nanolithography, MEMS, and MOEMS, 5, 043002(2006).

    [12] Huang W C, Lin C H, Kuo C C et al. Two threshold resist models for optical proximity correction[J]. Proceedings of SPIE, 5377, 1536-1543(2004).

    [13] Zhang X Z, Xia F, Xu J J. The mechanisms and research progress of laser fabrication technologies beyond diffraction limit[J]. Acta Physica Sinica, 66, 144207(2017).

    [14] Zhao Z, Luo Y, Zhang W et al. Going far beyond the near-field diffraction limit via plasmonic cavity lens with high spatial frequency spectrum off-axis illumination[J]. Scientific Reports, 5, 15320(2015).

    [15] Fang N, Lee H, Sun C et al. Sub-diffraction-limited optical imaging with a silver superlens[J]. Science, 308, 534-537(2005).

    [16] Boriskina S V, Cooper T A, Zeng L P et al. Losses in plasmonics: from mitigating energy dissipation to embracing loss-enabled functionalities[J]. Advances in Optics and Photonics, 9, 775(2017).

    [17] Riehn R, Charas A, Morgado J et al. Near-field optical lithography of a conjugated polymer[J]. Applied Physics Letters, 82, 526-528(2003).

    [18] Gustafsson M G L. Surpassing the lateral resolution limit by a factor of two using structured illumination microscopy[J]. Journal of Microscopy, 198, 82-87(2000).

    [19] Berry M V, Popescu S. Evolution of quantum superoscillations and optical superresolution without evanescent waves[J]. Journal of Physics A: Mathematical and General, 39, 6965-6977(2006).

    [20] Alubaidy A, Venkatakrishnan K, Tan B. Dual wavelength multiphoton absorption[J]. Designed Monomers and Polymers, 17, 126-131(2014).

    [21] Hell S W. Strategy for far-field optical imaging and writing without diffraction limit[J]. Physics Letters A, 326, 140-145(2004).

    [22] Kawata S, Sun H B, Tanaka T et al. Finer features for functional microdevices[J]. Nature, 412, 697-698(2001).

    [23] Zhang Y L, Chen Q D, Xia H et al. Designable 3D nanofabrication by femtosecond laser direct writing[J]. Nano Today, 5, 435-448(2010).

    [24] Lee K S, Kim R H, Yang D Y et al. Advances in 3D nano/microfabrication using two-photon initiated polymerization[J]. Progress in Polymer Science, 33, 631-681(2008).

    [25] Vaezi M, Seitz H, Yang S F. A review on 3D micro-additive manufacturing technologies[J]. The International Journal of Advanced Manufacturing Technology, 67, 1721-1754(2013).

    [26] Maruo S, Fourkas J T. Recent progress in multiphoton microfabrication[J]. Laser & Photonics Reviews, 2, 100-111(2008).

    [27] Yablonovitch E. Photonic band-gap structures[J]. Journal of the Optical Society of America B, 10, 283-295(1993).

    [28] Russell P. Photonic crystal fibers[J]. Science, 299, 358-362(2003).

    [29] Aguirre C I, Reguera E, Stein A. Colloidal photonic crystal pigments with low angle dependence[J]. ACS Applied Materials & Interfaces, 2, 3257-3262(2010).

    [30] Larson D R, Zipfel W R, Williams R M et al. Water-soluble quantum dots for multiphoton fluorescence imaging in vivo[J]. Science, 300, 1434-1436(2003).

    [31] Williams R M, Zipfel W R, Webb W W. Multiphoton microscopy in biological research[J]. Current Opinion in Chemical Biology, 5, 603-608(2001).

    [32] Stockman M I, Kneipp K, Bozhevolnyi S I et al. Roadmap on plasmonics[J]. Journal of Optics, 20, 043001(2018).

    [33] Chen L W, Zhou Y, Li Y et al. Microsphere enhanced optical imaging and patterning: from physics to applications[J]. Applied Physics Reviews, 6, 021304(2019).

    [34] Göppert-Mayer M. Über elementarakte mit zwei quantensprüngen[J]. Annalen Der Physik, 401, 273-294(1931).

    [35] Wang Z M, Wang X M, Zhao J F et al. Cooperative enhancement of two-photon absorption based on electron coupling in triphenylamine-branching chromophore[J]. Dyes and Pigments, 79, 145-152(2008).

    [36] Hell S W, Wichmann J. Breaking the diffraction resolution limit by stimulated emission: stimulated-emission-depletion fluorescence microscopy[J]. Optics Letters, 19, 780-782(1994).

    [37] Li L J, Gattass R R, Gershgoren E et al. Achieving λ/20 resolution by one-color initiation and deactivation of polymerization[J]. Science, 324, 910-913(2009).

    [38] Liu Y H, Zhao Y Y, Jin F et al. λ/12 super resolution achieved in maskless optical projection nanolithography for efficient cross-scale patterning[J]. Nano Letters, 21, 3915-3921(2021).

    [39] Lan H B, Li D C, Lu B H. Micro-and nanoscale 3D printing[J]. Scientia Sinica (Technologica), 45, 919-940(2015).

    [40] Liu M N, Li M T, Sun H B. 3D femtosecond laser nanoprinting[J]. Laser & Optoelectronics Progress, 55, 011410(2018).

    [41] Oakdale J S, Smith R F, Forien J B et al. Direct laser writing of low-density interdigitated foams for plasma drive shaping[J]. Advanced Functional Materials, 27, 1702425(2017).

    [42] Gan F X, Wang Y. Breaking through the optical diffraction limits, developing the nano-optics and photonics[J]. Acta Optica Sinica, 31, 0900104(2011).

    [43] Kennedy D. 125[J]. Science, 309, 19(2005).

    [44] Kennedy D, Norman C. What don’t we know?[J]. Science, 309, 75(2005).

    [45] Alaina G L. 125 questions: exploration and discovery[EB/OL]. https://www.science.org/content/resource/125-questions-exploration-and-discovery

    [46] Stamnes J J. Waves in focal regions. Propagation, diffraction and focusing of light, sound and water waves[M], 1-603(1986).

    [47] Debye P. Das verhalten von lichtwellen in der nähe eines brennpunktes Oder einer brennlinie[J]. Annalen Der Physik, 335, 755-776(1909).

    [48] Abbe E. Beiträge zur theorie des mikroskops und der mikroskopischen wahrnehmung[J]. Archiv Für Mikroskopische Anatomie, 9, 413-468(1873).

    [49] Rayleigh L. XII. On the manufacture and theory of diffraction-gratings[J]. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 47, 81-93(1874).

    [50] Groves T R. Electron beam lithography[M]. Feldman M. Nanolithography. The art of fabricating nanoelectronic and nanophotonic devices and systems, 80-115(2014).

    [51] Rice B J. Extreme ultraviolet (EUV) lithography[M]. Feldman M. Nanolithography. The art of fabricating nanoelectronic and nanophotonic devices and systems, 42-79(2014).

    [52] Seisyan R P. Nanolithography in microelectronics: a review[J]. Technical Physics, 56, 1061-1073(2011).

    [53] Owa S, Nagasaka H. Immersion lithography: its potential performance and issues[J]. Proceedings of SPIE, 5040, 724-733(2003).

    [54] Levenson M D. Wavefront engineering for photolithography[J]. Physics Today, 46, 28-36(1993).

    [55] Saavedra H M, Mullen T J, Zhang P P et al. Hybrid strategies in nanolithography[J]. Reports on Progress in Physics, 73, 036501(2010).

    [56] Lu C, Lipson R H. Interference lithography: a powerful tool for fabricating periodic structures[J]. Laser & Photonics Reviews, 4, 568-580(2010).

    [57] Chen Y F. Nanofabrication by electron beam lithography and its applications: a review[J]. Microelectronic Engineering, 135, 57-72(2015).

    [58] Watt F, Bettiol A A, van Kan J A et al. Ion beam lithography and nanofabrication: a review[J]. International Journal of Nanoscience, 4, 269-286(2005).

    [59] Fischer J, Wegener M. Three-dimensional optical laser lithography beyond the diffraction limit[J]. Laser & Photonics Reviews, 7, 22-44(2013).

    [60] Hao X, Kuang C F, Li Y H et al. Hydrophilic microsphere based mesoscopic-lens microscope (MMM)[J]. Optics Communications, 285, 4130-4133(2012).

    [61] Wang Z, Guo W, Li L et al. Optical virtual imaging at 50 nm lateral resolution with a white-light nanoscope[J]. Nature Communications, 2, 218(2011).

    [62] Alkaisi M M, Blaikie R J, McNab S J et al. Sub-diffraction-limited patterning using evanescent near-field optical lithography[J]. Applied Physics Letters, 75, 3560-3562(1999).

    [63] Pohl D W, Denk W, Duerig U. Optical stethoscopy: imaging with λ/20[J]. Applied Physics Letters, 44, 651-653(1986).

    [64] Murphy-Dubay N, Wang L, Kinzel E C et al. Nanopatterning using NSOM probes integrated with high transmission nanoscale bowtie aperture[J]. Optics Express, 16, 2584-2589(2008).

    [65] Stern E A, Ferrell R A. Surface plasma oscillations of a degenerate electron gas[J]. Physical Review, 120, 130-136(1960).

    [66] Luo X G, Ishihara T. Surface plasmon resonant interference nanolithography technique[J]. Applied Physics Letters, 84, 4780-4782(2004).

    [67] Luo X G, Ishihara T. Subwavelength photolithography based on surface-plasmon polariton resonance[J]. Optics Express, 12, 3055-3065(2004).

    [68] Ohtsu M, Kobayashi K, Ito H et al. Nanofabrication and atom manipulation by optical near-field and relevant quantum optical theory[J]. Proceedings of the IEEE, 88, 1499-1518(2000).

    [69] Liu X M, Wang J, Li D C. Scanning near-field optical microscope and application[J]. Chinese Journal of Lasers, 26, 793-798(1999).

    [70] Kauranen M, Zayats A V. Nonlinear plasmonics[J]. Nature Photonics, 6, 737-748(2012).

    [71] Wang C T, Zhao Z Y, Gao P et al. Surface plasmon lithography beyond the diffraction limit[J]. Chinese Science Bulletin, 61, 585-599(2016).

    [72] Xu T, Zhao Y H, Ma J X et al. Sub-diffraction-limited interference photolithography with metamaterials[J]. Optics Express, 16, 13579-13584(2008).

    [73] Liu Y M, Zentgraf T, Bartal G et al. Transformational plasmon optics[J]. Nano Letters, 10, 1991-1997(2010).

    [74] Xiong Y, Liu Z W, Durant S et al. Tuning the far-field superlens: from UV to visible[J]. Optics Express, 15, 7095-7102(2007).

    [75] Smith D R. How to build a superlens[J]. Science, 308, 502-503(2005).

    [76] Gao P, Yao N, Wang C T et al. Enhancing aspect profile of half-pitch 32 nm and 22 nm lithography with plasmonic cavity lens[J]. Applied Physics Letters, 106, 093110(2015).

    [77] Wang C T, Zhang W, Zhao Z Y et al. Plasmonic structures, materials and lenses for optical lithography beyond the diffraction limit: a review[J]. Micromachines, 7, 118(2016).

    [78] Lee J Y, Hong B H, Kim W Y et al. Near-field focusing and magnification through self-assembled nanoscale spherical lenses[J]. Nature, 460, 498-501(2009).

    [79] Hao X, Kuang C F, Liu X et al. Microsphere based microscope with optical super-resolution capability[J]. Applied Physics Letters, 99, 203102(2011).

    [80] Bonakdar A, Rezaei M, Brown R L et al. Deep-UV microsphere projection lithography[J]. Optics Letters, 40, 2537-2540(2015).

    [81] de Juana D M, Oti J E, Canales V F et al. Design of superresolving continuous phase filters[J]. Optics Letters, 28, 607(2003).

    [82] Ferreira P J S G, Kempf A. Superoscillations: faster than the Nyquist rate[J]. IEEE Transactions on Signal Processing, 54, 3732-3740(2006).

    [83] Rogers E T F, Zheludev N I. Optical super-oscillations: sub-wavelength light focusing and super-resolution imaging[J]. Journal of Optics, 15, 094008(2013).

    [84] Huang K, Ye H P, Teng J H et al. Optimization-free superoscillatory lens using phase and amplitude masks[J]. Laser & Photonics Reviews, 8, 152-157(2014).

    [85] Huang F M, Zheludev N I. Super-resolution without evanescent waves[J]. Nano Letters, 9, 1249-1254(2009).

    [86] Rogers E T F, Lindberg J, Roy T et al. A super-oscillatory lens optical microscope for subwavelength imaging[J]. Nature Materials, 11, 432-435(2012).

    [87] Glubokov D A, Sychev V V, Vitukhnovsky A G et al. Photonic crystal fibre-based light source for STED lithography[J]. Quantum Electronics, 43, 588-590(2013).

    [88] Kaiser W, Garrett C G B. Two-photon excitation in CaF2: Eu2+[J]. Physical Review Letters, 7, 229-231(1961).

    [89] Deng W J, Xu Y H, Liu P. The uncertainty relations and minimum uncertainty states[J]. Acta Physica Sinica, 52, 2961-2964(2003).

    [90] Duan K M, Li C F. Entanglement-assisted entropic uncertainty principle[J]. Frontiers of Physics, 7, 259-260(2012).

    [91] Birge R R, Pierce B M. Semiclassical time-dependent theory of two-photon spectroscopy. The effect of dephasing in the virtual level on the two-photon excitation spectrum of isotachysterol[J]. International Journal of Quantum Chemistry, 29, 639-656(1986).

    [92] Pawlicki M, Collins H A, Denning R G et al. Two-photon absorption and the design of two-photon dyes[J]. Angewandte Chemie International Edition, 48, 3244-3266(2009).

    [93] Cao Y Y, Xie F, Zhang P D et al. Dual-beam super-resolution direct laser writing nanofabrication technology[J]. Opto-Electronic Engineering, 44, 1133-1145, 1254(2017).

    [94] Tanaka T, Sun H B, Kawata S. Rapid sub-diffraction-limit laser micro/nanoprocessing in a threshold material system[J]. Applied Physics Letters, 80, 312-314(2002).

    [95] Klar T A, Wollhofen R, Jacak J. Sub-abbe resolution: from STED microscopy to STED lithography[J]. Physica Scripta, T162, 014049(2014).

    [96] Scott T F, Kowalski B A, Sullivan A C et al. Two-color single-photon photoinitiation and photoinhibition for subdiffraction photolithography[J]. Science, 324, 913-917(2009).

    [97] Xiong X W, Chen S P, Zhu H T et al. High reflectivity mid-infrared fiber Bragg grating by femtosecond laser direct inscription method[J]. Chinese Journal of Lasers, 49, 0101014(2022).

    [98] Li M K, Xiang X S, Zhou C H et al. Two-dimensional grating fabrication based on ultra-precision laser direct writing system[J]. Acta Optica Sinica, 39, 0905001(2019).

    [99] Denk W, Strickler J H, Webb W W. Two-photon laser scanning fluorescence microscopy[J]. Science, 248, 73-76(1990).

    [100] Maruo S, Nakamura O, Kawata S. Three-dimensional microfabrication with two-photon-absorbed photopolymerization[J]. Optics Letters, 22, 132-134(1997).

    [101] Takada K, Sun H B, Kawata S. Improved spatial resolution and surface roughness in photopolymerization-based laser nanowriting[J]. Applied Physics Letters, 86, 071122(2005).

    [102] Xing J F, Chen W Q, Gu J et al. Design of high efficiency for two-photon polymerization initiator: combination of radical stabilization and large two-photon cross-section achieved by N-benzyl 3, 6-bis(phenylethynyl) carbazole derivatives[J]. Journal of Materials Chemistry, 17, 1433-1438(2007).

    [103] Xing J F, Dong X Z, Chen W Q et al. Improving spatial resolution of two-photon microfabrication by using photoinitiator with high initiating efficiency[J]. Applied Physics Letters, 90, 131106(2007).

    [104] Dong X Z, Zhao Z S, Duan X M. Improving spatial resolution and reducing aspect ratio in multiphoton polymerization nanofabrication[J]. Applied Physics Letters, 92, 091113(2008).

    [105] Song Y, Dong X Z, Zhao Z S et al. Investigation into ultimate resolution by femtosecond laser two-photon fabrication technique[J]. High Power Laser and Particle Beams, 23, 1780-1784(2011).

    [106] Juodkazis S, Mizeikis V, Seet K K et al. Two-photon lithography of nanorods in SU-8 photoresist[J]. Nanotechnology, 16, 846-849(2005).

    [107] Tan D F, Li Y, Qi F J et al. Reduction in feature size of two-photon polymerization using SCR500[J]. Applied Physics Letters, 90, 071106(2007).

    [108] Wang S H, Yu Y, Liu H L et al. Sub-10-nm suspended nano-web formation by direct laser writing[J]. Nano Futures, 2, 025006(2018).

    [109] Cao H Z, Zheng M L, Dong X Z et al. Two-photon nanolithography of positive photoresist thin film with ultrafast laser direct writing[J]. Applied Physics Letters, 102, 201108(2013).

    [110] Xiong Z, Dong X Z, Chen W Q et al. Fast solvent-driven micropump fabricated by two-photon microfabrication[J]. Applied Physics A, 93, 447-452(2008).

    [111] Malinauskas M, Žukauskas A, Hasegawa S et al. Ultrafast laser processing of materials: from science to industry[J]. Light: Science & Applications, 5, e16133-e16133(2016).

    [112] Altissimo M. E-beam lithography for micro-nanofabrication[J]. Biomicrofluidics, 4, 026503(2010).

    [113] Peuker M, Lim M H, Smith H I et al. Hydrogen SilsesQuioxane, a high-resolution negative tone e-beam resist, investigated for its applicability in photon-based lithographies[J]. Microelectronic Engineering, 61/62, 803-809(2002).

    [114] Volksen W, Miller R D, Dubois G. Low dielectric constant materials[J]. Chemical Reviews, 110, 56-110(2010).

    [115] Gangnaik A S, Georgiev Y M, Holmes J D. New generation electron beam resists: a review[J]. Chemistry of Materials, 29, 1898-1917(2017).

    [116] Choi S, Word M J, Kumar V et al. Comparative study of thermally cured and electron-beam-exposed hydrogen silsesquioxane resists[J]. Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures, 26, 1654-1659(2008).

    [117] Namatsu H, Takahashi Y, Yamazaki K et al. Three-dimensional siloxane resist for the formation of nanopatterns with minimum linewidth fluctuations[J]. Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures, 16, 69-76(1998).

    [118] Jin F, Liu J, Zhao Y Y et al. λ/30 inorganic features achieved by multi-photon 3D lithography[J]. Nature Communications, 13, 1357(2022).

    [119] Scott T F, Kloxin C J, Forman D L et al. Principles of voxel refinement in optical direct write lithography[J]. Journal of Materials Chemistry, 21, 14150-14155(2011).

    [120] Fischer J, Mueller J B, Quick A S et al. Exploring the mechanisms in STED-enhanced direct laser writing[J]. Advanced Optical Materials, 3, 221-232(2015).

    [121] Fischer J, von Freymann G, Wegener M. The materials challenge in diffraction-unlimited direct-laser-writing optical lithography[J]. Advanced Materials, 22, 3578-3582(2010).

    [122] Gan Z, Cao Y, Evans R A et al. Three-dimensional deep sub-diffraction optical beam lithography with 9 nm feature size[J]. Nature Communications, 4, 2061(2013).

    [123] Andrew T L, Tsai H Y, Menon R. Confining light to deep subwavelength dimensions to enable optical nanopatterning[J]. Science, 324, 917-921(2009).

    [124] Wollhofen R, Katzmann J, Hrelescu C et al. 120 nm resolution and 55 nm structure size in STED-lithography[J]. Optics Express, 21, 10831-10840(2013).

    [125] Wollhofen R, Buchegger B, Eder C et al. Functional photoresists for sub-diffraction stimulated emission depletion lithography[J]. Optical Materials Express, 7, 2538-2559(2017).

    [126] Zhou G Z, He M F, Yang Z Y et al. Dual-beam laser direct writing nano-lithography system based on peripheral photoinhibition technology[J]. Chinese Journal of Lasers, 49, 0202001(2022).

    [127] Tong Q C, Nguyen D T T, Do M T et al. Direct laser writing of polymeric nanostructures via optically induced local thermal effect[J]. Applied Physics Letters, 108, 183104(2016).

    [128] Wang Y S, Guo C F, Cao S H et al. Controllable fabrication of super-resolution nanocrater arrays by laser direct writing[J]. Journal of Nanoscience and Nanotechnology, 10, 7134-7137(2010).

    [129] Qin L, Huang Y Q, Xia F et al. 5 nm nanogap electrodes and arrays by super-resolution laser lithography[J]. Nano Letters, 20, 4916-4923(2020).

    [130] Zhang Z M, Meng Q W, Luo N N. A DMD based UV lithography method with improved dynamical modulation range for the fabrication of curved microstructures[J]. AIP Advances, 11, 045008(2021).

    [131] Kim J B, Jeong K H. Batch fabrication of functional optical elements on a fiber facet using DMD based maskless lithography[J]. Optics Express, 25, 16854-16859(2017).

    [132] Zhang Z M, Gao Y Q, Luo N N et al. Fast fabrication of curved microlens array using DMD-based lithography[J]. AIP Advances, 6, 015319(2016).

    [133] Zheng Q, Zhou J Y, Chen Q M et al. Rapid prototyping of a Dammann grating in DMD-based maskless lithography[J]. IEEE Photonics Journal, 11, 19178293(2019).

    [134] Martinsson H, Sandstrom T, Bleeker A J et al. Current status of optical maskless lithography[J]. Journal of Micro/Nanolithography, MEMS, and MOEMS, 4, 011003(2005).

    [135] Waldbaur A, Waterkotte B, Schmitz K et al. Maskless projection lithography for the fast and flexible generation of grayscale protein patterns[J]. Small, 8, 1570-1578(2012).

    [136] Liu Y H, Zhao Y Y, Dong X Z et al. Multi-scale structure patterning by digital-mask projective lithography with an alterable projective scaling system[J]. AIP Advances, 8, 065317(2018).

    [137] Sun C, Fang N, Wu D M et al. Projection micro-stereolithography using digital micro-mirror dynamic mask[J]. Sensors and Actuators A: Physical, 121, 113-120(2005).

    [138] Kim K, Han S, Yoon J et al. Lithographic resolution enhancement of a maskless lithography system based on a wobulation technique for flow lithography[J]. Applied Physics Letters, 109, 234101(2016).

    [139] Geng Q, Wang D, Chen P et al. Ultrafast multi-focus 3-D nano-fabrication based on two-photon polymerization[J]. Nature Communications, 10, 2179(2019).

    [140] Kato J I, Takeyasu N, Adachi Y et al. Multiple-spot parallel processing for laser micronanofabrication[J]. Applied Physics Letters, 86, 044102(2005).

    [141] Dong X Z, Zhao Z S, Duan X M. Micronanofabrication of assembled three-dimensional microstructures by designable multiple beams multiphoton processing[J]. Applied Physics Letters, 91, 124103(2007).

    [142] Kang M S, Han C, Jeon H. Submicrometer-scale pattern generation via maskless digital photolithography[J]. Optica, 7, 1788-1795(2020).

    [143] Saha S K, Wang D E, Nguyen V H et al. Scalable submicrometer additive manufacturing[J]. Science, 366, 105-109(2019).

    [144] Somers P, Liang Z, Johnson J E et al. Rapid, continuous projection multi-photon 3D printing enabled by spatiotemporal focusing of femtosecond pulses[J]. Light: Science & Applications, 10, 199(2021).

    [145] Li Y C, Cheng L C, Chang C Y et al. Fast multiphoton microfabrication of freeform polymer microstructures by spatiotemporal focusing and patterned excitation[J]. Optics Express, 20, 19030-19038(2012).

    [146] Deng M J, Zhao Y Y, Liang Z X et al. Maximizing energy utilization in DMD-based projection lithography[J]. Optics Express, 30, 4692-4705(2022).

    [147] Levenson M D, Viswanathan N S, Simpson R A. Improving resolution in photolithography with a phase-shifting mask[J]. IEEE Transactions on Electron Devices, 29, 1828-1836(1982).

    [148] Ma X, Jiang S L, Wang J et al. A fast and manufacture-friendly optical proximity correction based on machine learning[J]. Microelectronic Engineering, 168, 15-26(2017).

    [149] Hooker K, Kuechler B, Kazarian A et al. ILT optimization of EUV masks for sub-7 nm lithography[J]. Proceedings of SPIE, 10446, 1044604(2017).

    [150] Ma X, Arce G R[M]. Computational lithography(2011).

    [151] Jiang B T, Liu L X, Ma Y Z et al. Neural-ILT: migrating ILT to neural networks for mask printability and complexity co-optimization[C](2020).

    [152] Li L, Wang Q G. Thermoelectricity in heterogeneous nanofluidic channels[J]. Small, 14, e1800369(2018).

    [153] Fontana M, Fijen C, Lemay S G et al. High-throughput, non-equilibrium studies of single biomolecules using glass-made nanofluidic devices[J]. Lab on a Chip, 19, 79-86(2018).

    [154] Xing J F, Zheng M L, Duan X M. Two-photon polymerization microfabrication of hydrogels: an advanced 3D printing technology for tissue engineering and drug delivery[J]. Chemical Society Reviews, 44, 5031-5039(2015).

    Zixin Liang, Yuanyuan Zhao, Xuanming Duan. Principle and Technology of Laser Super-Diffraction Lithography[J]. Laser & Optoelectronics Progress, 2022, 59(9): 0922029
    Download Citation