• Journal of Semiconductors
  • Vol. 40, Issue 12, 122901 (2019)
C. Usha and P. Vimala
Author Affiliations
  • Department of Electronics and Communication Engineering, Dayananda Sagar College of Engineering, Bangalore-560078, KA, India
  • show less
    DOI: 10.1088/1674-4926/40/12/122901 Cite this Article
    C. Usha, P. Vimala. A compact two-dimensional analytical model of the electrical characteristics of a triple-material double-gate tunneling FET structure[J]. Journal of Semiconductors, 2019, 40(12): 122901 Copy Citation Text show less

    Abstract

    This paper presents a compact two-dimensional analytical device model of surface potential, in addition to electric field of triple-material double-gate (TMDG) tunnel FET. The TMDG TFET device model is developed using a parabolic approximation method in the channel depletion space and a boundary state of affairs across the drain and source. The TMDG TFET device is used to analyze the electrical performance of the TMDG structure in terms of changes in potential voltage, lateral and vertical electric field. Because the TMDG TFET has a simple compact structure, the surface potential is computationally efficient and, therefore, may be utilized to analyze and characterize the gate-controlled devices. Furthermore, using Kane's model, the current across the drain can be modeled. The graph results achieved from this device model are close to the data collected from the technology computer aided design (TCAD) simulation.
    $ \frac{{{\partial ^2} \textit{ϕ} (x,y)}}{{\partial {x^2}}} + \frac{{{\partial ^2}\textit{ϕ} (x,y)}}{{\partial {y^2}}} = 0. $ (1)

    View in Article

    $ \textit{ϕ} (x,y) = {C_0}(x) + {C_1}(x)y + {C_2}(x){y^2}. $ (2)

    View in Article

    $ {\textit{ϕ} _1}(x,y) = {C_{10}}(x) + {C_{11}}(x)y + {C_{12}}(x){y^2},\;\;\;{\rm{ 0}} \leqslant x \leqslant {L_1}, $ (3)

    View in Article

    $ {\textit{ϕ} _2}(x,y) = {C_{20}}(x) + {C_{21}}(x)y + {C_{22}}(x){y^2},\;\;\;{{{L}}_{\rm{1}}} \leqslant x \leqslant {L_1} + {L_2}, $ (4)

    View in Article

    $\begin{split} {\textit{ϕ} _3}(x,y) =\, & {C_{30}}(x) + {C_{31}}(x)y + {C_{32}}(x){y^2},\\ & {{{L}}_{\rm{1}}} + {L_2} \leqslant x \leqslant {{{L}}_{\rm{1}}} + {L_2} + {L_3}.\end{split}$ (5)

    View in Article

    $ \frac{{{\rm d}{\textit{ϕ}_1}(x,y)}}{{{\rm d}x}} = \frac{{{\varepsilon _{\rm ox}}}}{{{\varepsilon _{\rm{si}}}}}{\rm{ }}\frac{{{\textit{ϕ}_{{{\rm s}1}}}(x) - {\psi _{{{\rm g}1}}}}}{{{t_{\rm ox}}}},{\rm{under}}\; {\rm{material}} \;{\rm{M}}1\; {\rm{at}}\;y=0, $ (6)

    View in Article

    $ \frac{{{\rm d}{\textit{ϕ} _2}(x,y)}}{{{\rm d}x}} = \frac{{{\varepsilon _{\rm ox}}}}{{{\varepsilon _{\rm{si}}}}}\frac{{{\phi _{{{\rm s}2}}}(x) - {\psi _{{{\rm g}2}}}}}{{_{}{t_{\rm ox}}}},{\rm{under}}\; {\rm{material}} \;{\rm{M}}2\; {\rm{at}}\;y=0, $ (7)

    View in Article

    $ \frac{{{\rm d}{\textit{ϕ}_3}(x,y)}}{{{\rm d}x}} = \frac{{{\varepsilon _{\rm ox}}}}{{{\varepsilon _{\rm{si}}}}}\frac{{{\textit{ϕ} _{\rm s3}}(x) - {\psi _{{{\rm g}_3}}}}}{{_{}{t_{\rm ox}}}},{\rm{unde}}\; {\rm{material}} \;{\rm{M}}3\; {\rm{at}}\;y=0. $ (8)

    View in Article

    $ \frac{{{\rm d}{\textit{ϕ} _1}(x,y)}}{{{\rm d}x}} = \frac{{{\varepsilon _{\rm{ox}}}}}{{{\varepsilon _{\rm{si}}}}}{\rm{ }}\frac{{{\psi _{{{\rm g}1}}} - {\textit{ϕ}_{{{\rm s}1}}}(x)}}{{{t_{\rm{ox}}}}},{\rm{under}}\; {\rm{material}} \;{\rm{M}}1\; {\rm{at}}\;y=t_{\rm{si}}, $ (9)

    View in Article

    $ \frac{{{\rm d}{\textit{ϕ}_2}(x,y)}}{{{\rm d}x}} = \frac{{{\varepsilon _{\rm{ox}}}}}{{{\varepsilon _{\rm{si}}}}}{\rm{ }}\frac{{{\psi _{\rm g2}} - {\textit{ϕ}_{\rm s2}}(x)}}{{{t_{\rm{ox}}}}},{\rm{under}}\; {\rm{material}} \;{\rm{M}}2\; {\rm{at}}\;y=t_{\rm{si}}, $ (10)

    View in Article

    $ \frac{{{\rm d}{\textit{ϕ}_3}(x,y)}}{{{\rm d}x}} = \frac{{{\varepsilon _{\rm{ox}}}}}{{{\varepsilon _{\rm{si}}}}}{\rm{ }}\frac{{{\psi _{\rm g3}} - {\textit{ϕ}_{\rm s3}}(x)}}{{{t_{\rm{ox}}}}},{\rm{under}}\; {\rm{material}} \;{\rm{M}}3\; {\rm{at}}\;y=t_{\rm{si}}. $ (11)

    View in Article

    $ {C_{10}} = \,{\textit{ϕ}_{\rm s1}}(x), $ (12)

    View in Article

    $ {C_{11}} = \frac{{{\varepsilon _{\rm ox}}}}{{{\varepsilon _{\rm{si}}}}}\left[ {\frac{{{\textit{ϕ}_{\rm{si}}} - {\psi _{\rm g1}}}}{{{t_{\rm ox}}}}} \right], $ (13)

    View in Article

    $ {C_{12}} = - \frac{1}{{{t_{\rm si}}}}\frac{{{\varepsilon _{\rm{ox}}}}}{{{\varepsilon _{\rm{si}}}}}\left[ {\frac{{{\textit{ϕ} _{\rm{si}}} - {\psi _{\rm g1}}}}{{{t_{\rm{ox}}}}}} \right], $ (14)

    View in Article

    $ {C_{20}} = \,\,\,\,{\textit{ϕ}_{\rm s2}}(x), $ (15)

    View in Article

    $ {C_{21}} = \frac{{{\varepsilon _{\rm ox}}}}{{{\varepsilon _{\rm{si}}}}}\left[ {\frac{{{\textit{ϕ}_{\rm{si}}} - {\psi _{\rm g2}}}}{{{t_{\rm{ox}}}}}} \right], $ (16)

    View in Article

    $ {C_{22}} = - \frac{1}{{{t_{\rm{si}}}}}\frac{{{\varepsilon _{\rm ox}}}}{{{\varepsilon _{\rm{si}}}}}\left[ {\frac{{{\textit{ϕ} _{\rm{si}}} - {\psi _{\rm g2}}}}{{{t_{\rm{ox}}}}}} \right], $ (17)

    View in Article

    $ {C_{30}} = \,\,\,\,{\textit{ϕ}_{\rm s3}}(x), $ (18)

    View in Article

    $ {C_{31}} = \frac{{{\varepsilon _{\rm{ox}}}}}{{{\varepsilon _{\rm{si}}}}}\left[ {\frac{{{\textit{ϕ}_{\rm{si}}} - {\psi _{\rm g3}}}}{{{t_{\rm{ox}}}}}} \right], $ (19)

    View in Article

    $ {C_{32}} = - \frac{1}{{{t_{\rm{si}}}}}\frac{{{\varepsilon _{\rm{ox}}}}}{{{\varepsilon _{\rm{si}}}}}\left[ {\frac{{{\textit{ϕ} _{\rm{si}}} - {\psi _{\rm g3}}}}{{{t_{\rm{ox}}}}}} \right]. $ (20)

    View in Article

    $ {\textit{ϕ}_{\rm s1}}(0,0)=V_{\rm{bi}}, $ (21)

    View in Article

    $ {\textit{ϕ}_{\rm s1}}({L_1},0)={\textit{ϕ}_{\rm s2}}({L_1},0), $ (22)

    View in Article

    $ \frac{{\partial {\textit{ϕ}_{\rm s1}}}}{{\partial x}} = {\frac{{\partial {\textit{ϕ}_{\rm s2}}}}{{\partial x}}},\;\;{\rm{when}}\;x=L_1, $ (23)

    View in Article

    $ {\textit{ϕ}_{\rm s2}}({L_1} + {L_2},0) = {\textit{ϕ}_{\rm s3}}({L_1} + {L_2},0), $ (24)

    View in Article

    $ \frac{{\partial {\textit{ϕ}_{\rm s2}}}}{{\partial x}} = \frac{{\partial {\textit{ϕ}_{\rm s3}}}}{{\partial x}},\;\;\;\;{\rm{when}}\;x=L_1+L_2, $ (25)

    View in Article

    $ {\textit{ϕ}_{\rm s3}}({L_1} + {L_2} + {L_3},0) = {V_{\rm{bi}}} + {V_{\rm{DS}}}. $ (26)

    View in Article

    $ {\textit{ϕ}_{\rm s}}_1(x) = A{{\rm e}^{\lambda x}} + B{{\rm e}^{ - \lambda x}} + {\psi _{{\rm g1}}},{\rm{ 0}} \leqslant x \leqslant {L_1}, $ (27)

    View in Article

    $ {\textit{ϕ}_{\rm s}}_2(x) = C{{\rm e}^{\lambda (x - {L_1})}} + D{{\rm e}^{ - \lambda (x - {L_1})}} + {\psi _{{\rm g2}}},\;\;\;{L_1} \leqslant x \leqslant {L_1} + {L_2}, $ (28)

    View in Article

    $\begin{split} {\textit{ϕ}_{\rm s}}_3(x) =\, & E{{\rm e}^{\lambda (x - {L_1} - {L_2})}} + F{{\rm e}^{ - \lambda (x - {L_1} - {L_2})}} + {\psi _{{\rm g3}}},\\ & {L_1} + {L_2}\; \leqslant x \leqslant {L_1} + {L_2} + {L_3},\end{split}$ (29)

    View in Article

    $ \lambda = \sqrt {\frac{{2{\varepsilon _{\rm{ox}}}}}{{{\varepsilon _{\rm{si}}}{t_{\rm{ox}}}{t_{\rm{si}}}}}} $ ()

    View in Article

    $ {\psi _{{\rm{g1}}}} = {V_{\rm{gs}}} - {\textit{ϕ}_{\rm m1}} + \chi + {E_{\rm g}}/2 $ ()

    View in Article

    $ {\psi _{\rm g2}} = {V_{\rm{gs}}} - {\textit{ϕ}_{\rm m2}} + \chi + {E_{\rm g}}/2 $ ()

    View in Article

    $ {\psi _{\rm g3}} = {V_{\rm{gs}}} - {\textit{ϕ}_{\rm m3}} + \chi + {E_{\rm g}}/2$()

    View in Article

    $ A = \frac{{({V_{\rm{bi}}} - {\psi _{\rm g1}}){{\rm e}^{ - \lambda ({L_1} + {L_2} + {L_3})}} - ({V_{\rm{bi}}} + {V_{\rm{DS}}} - {\psi _{\rm g3}}) + ({\psi _{\rm g1}} - {\psi _{\rm g2}})\cosh \lambda ({L_2} + {L_3}) + ({\psi _{\rm g2}} - {\psi _{\rm g3}})\cosh \lambda {L_3}}}{{{{\rm e}^{ - \lambda ({L_1} + {L_2} + {L_3})}} - {{\rm e}^{\lambda ({L_1} + {L_2} + {L_3})}}}} $ (30)

    View in Article

    $ B = \frac{{({V_{\rm{bi}}} + {V_{\rm{DS}}} - {\psi _{\rm g3}}) - ({V_{\rm{bi}}} - {\psi _{\rm g1}}){{\rm e}^{\lambda ({L_1} + {L_2} + {L_3})}} - ({\psi _{\rm g1}} - {\psi _{\rm g2}})\cosh \lambda ({L_2} + {L_3}) - ({\psi _{\rm g2}} - {\psi _{\rm g3}})\cosh \lambda {L_3}}}{{{{\rm e}^{ - \lambda ({L_1} + {L_2} + {L_3})}} - {{\rm e}^{\lambda ({L_1} + {L_2} + {L_3})}}}} $ (31)

    View in Article

    $ C = A{{\rm e}^{\lambda {L_1}}} + \frac{{{\psi _{\rm g1}} - {\psi _{\rm g2}}}}{2}, $ (32)

    View in Article

    $ D = B{{\rm e}^{ - \lambda {L_1}}} + \frac{{{\psi _{\rm g1}} - {\psi _{\rm g2}}}}{2}, $ (33)

    View in Article

    $ E = C{{\rm e}^{\lambda {L_{21}}}} + \frac{{{\psi _{\rm g2}} - {\psi _{\rm g3}}}}{2}, $ (34)

    View in Article

    $ F = D{{\rm e}^{\lambda {L_2}}} + \frac{{{\psi _{\rm g2}} - {\psi _{\rm g3}}}}{2}, $ (35)

    View in Article

    $ {E_{1x}}(x) = - \frac{{{\rm d}{\textit{ϕ}_{\rm s1}}(x)}}{{{\rm d}x}} = - A\lambda {{\rm e}^{\lambda x}} + B\lambda {e^{ - \lambda x}},\;\;\;{\rm{0}} \leqslant x \leqslant {L_1} $ (36)

    View in Article

    $\begin{split} {E_{2x}}(x) = & - \frac{{{\rm d}{\textit{ϕ}_{\rm s2}}(x)}}{{{\rm d}x}} = - C\lambda {{\rm e}^{\lambda (x - {L_1})}} + D\lambda {{\rm e}^{ - \lambda (x - {L_1})}},\\ & {{{L}}_{\rm{1}}} \leqslant x \leqslant {L_1} + {L_2},\end{split}$ (37)

    View in Article

    $\begin{split} {E_{3x}}(x) \!= & - \frac{{{\rm d}{\textit{ϕ}_{\rm s3}}(x)}}{{{\rm d}x}} \!\!=\! - E\lambda {{\rm e}^{\lambda (\!x - {L_1} - {L_2}\!)}} \!+\! F\lambda {{\rm e}^{ - \lambda (\!x - {L_1} - {L_2}\!)}},\\ & {L_1} + {L_2}\; \leqslant x \leqslant {L_1} + {L_2} + {L_3}.\end{split}$ (38)

    View in Article

    $ {E_{1y}}(x) = - \frac{{{\rm d}{\textit{ϕ}_1}(x,y)}}{{{\rm d}y}} = - {C_{11}}(x) - 2y{C_{12}},\;\;\;{\rm{0}} \leqslant x \leqslant {L_1}, $ (39)

    View in Article

    $ {E_{2y}}(x) \!=\! - \frac{{{\rm d}{\textit{ϕ}_2}(x,y)}}{{{\rm d}y}} \!=\! - {C_{21}}(x) \!-\! 2y{C_{22}},\;\;{{L}_1}\! \leqslant x \leqslant \! {L_1} \!+ {L_2}, $ (40)

    View in Article

    $\begin{split} {E_{3y}}(x) = & - \frac{{{\rm d}{\textit{ϕ}_3}(x,y)}}{{{\rm d}y}} = - {C_{31}}(x) - 2y{C_{32}},\\ & {L_1} + {L_2}\; \leqslant x \leqslant {L_1} + {L_2} + {L_3}.\end{split}$ (41)

    View in Article

    $ {I_{\rm DS}} = q\iint {G{\rm d}x{\rm d}y}, $ (42)

    View in Article

    $ G(E) = {A_1}{E^{{D_1}}}\exp \left( { - \frac{{{B_1}}}{E}} \right), $ (43)

    View in Article

    $E = \sqrt {{E_x} + {E_y}} .$()

    View in Article

    C. Usha, P. Vimala. A compact two-dimensional analytical model of the electrical characteristics of a triple-material double-gate tunneling FET structure[J]. Journal of Semiconductors, 2019, 40(12): 122901
    Download Citation