• Journal of Semiconductors
  • Vol. 43, Issue 4, 041106 (2022)
Xiaomei Wu, Xiaoxing Ke, and Manling Sui
Author Affiliations
  • Faculty of Materials and Manufacturing, Beijing University of Technology, Beijing 100124, China
  • show less
    DOI: 10.1088/1674-4926/43/4/041106 Cite this Article
    Xiaomei Wu, Xiaoxing Ke, Manling Sui. Recent progress on advanced transmission electron microscopy characterization for halide perovskite semiconductors[J]. Journal of Semiconductors, 2022, 43(4): 041106 Copy Citation Text show less
    References

    [1] Q Jiang, Y Zhao, X W Zhang et al. Surface passivation of perovskite film for efficient solar cells. Nat Photonics, 13, 460(2019).

    [2] Y W Lin, G M Lin, B Y Sun et al. Nanocrystalline perovskite hybrid photodetectors with high performance in almost every figure of merit. Adv Funct Mater, 28, 1705589(2018).

    [3] J H Ran, O Dyck, X Z Wang et al. Electron-beam-related studies of halide perovskites: Challenges and opportunities. Adv Energy Mater, 10, 1903191(2020).

    [4] P F Chen, W J Ong, Z H Shi et al. Pb-based halide perovskites: Recent advances in photo(electro)catalytic applications and looking beyond. Adv Funct Mater, 30, 1909667(2020).

    [5] T Ye, L Pan, Y Yang et al. Synthesis of highly-oriented black CsPbI3 microstructures for high-performance solar cells. Chem Mater, 32, 3235(2020).

    [6] M A Green, A Ho-Baillie, H J Snaith. The emergence of perovskite solar cells. Nat Photonics, 8, 506(2014).

    [7] Q Dong, Y Fang, Y Shao et al. Electron-hole diffusion lengths > 175 μm in solution-grown CH 3NH3PbI3 single crystals. Science, 347, 967(2015).

    [8] Z J Shi, J Guo, Y H Chen et al. Lead-free organic-inorganic hybrid perovskites for photovoltaic applications: Recent advances and perspectives. Adv Mater, 29, 1605005(2017).

    [9] Z B Yang, A Rajagopal, A K Y Jen. Ideal bandgap organic–inorganic hybrid perovskite solar cells. Adv Mater, 29, 1704418(2017).

    [10] M Kim, J Jeong, H Z Lu et al. Conformal quantum dot–SnO2 layers as electron transporters for efficient perovskite solar cells. Science, 375, 302(2022).

    [11] C Liu, J Sun, W L Tan et al. Alkali cation doping for improving the structural stability of 2D perovskite in 3D/2D PSCs. Nano Lett, 20, 1240(2020).

    [12] F X Xie, C C Chen, Y Z Wu et al. Vertical recrystallization for highly efficient and stable formamidinium-based inverted-structure perovskite solar cells. Energy Environ Sci, 10, 1942(2017).

    [13] W C Xiang, Z W Wang, D J Kubicki et al. Europium-doped CsPbI2Br for stable and highly efficient inorganic perovskite solar cells. Joule, 3, 205(2019).

    [14] S Yang, W X Niu, A L Wang et al. Ultrathin two-dimensional organic-inorganic hybrid perovskite nanosheets with bright, tunable photoluminescence and high stability. Angew Chem Int Ed, 56, 4252(2017).

    [15] Y Sun, Y Yin, M Pols et al. Engineering the phases and heterostructures of ultrathin hybrid perovskite nanosheets. Adv Mater, 32, 2002392(2020).

    [16] Y Su, X J Chen, W Y Ji et al. Highly controllable and efficient synthesis of mixed-halide CsPbX3 (X = Cl, Br, I) perovskite QDs toward the tunability of entire visible light. ACS Appl Mater Interfaces, 9, 33020(2017).

    [17] H Utzat, W W Sun, A E K Kaplan et al. Coherent single-photon emission from colloidal lead halide perovskite quantum dots. Science, 363, 1068(2019).

    [18] M R Filip, S Hillman, A A Haghighirad et al. Band gaps of the lead-free halide double perovskites Cs2BiAgCl6 and Cs2BiAgBr6 from theory and experiment. J Phys Chem Lett, 7, 2579(2016).

    [19] H X Zhong, M Yang, G Tang et al. Type-II lateral heterostructures of monolayer halide double perovskites for optoelectronic applications. ACS Energy Lett, 5, 2275(2020).

    [20] E T McClure, M R Ball, W Windl et al. Cs2AgBiX6 (X = Br, Cl): New visible light absorbing, lead-free halide perovskite semiconductors. Chem Mater, 28, 1348(2016).

    [21] C C Wu, Q H Zhang, Y Liu et al. The dawn of lead-free perovskite solar cell: Highly stable double perovskite Cs2AgBiBr6 film. Adv Sci, 5, 1700759(2018).

    [22] G Volonakis, A A Haghighirad, R L Milot et al. Cs2InAgCl6: A new lead-free halide double perovskite with direct band gap. J Phys Chem Lett, 8, 772(2017).

    [23] Z Z Li, W J Yin. Recent progress in Pb-free stable inorganic double halide perovskites. J Semicond, 39, 071003(2018).

    [24] Z W Xiao, Y F Yan. Progress in theoretical study of metal halide perovskite solar cell materials. Adv Energy Mater, 7, 1701136(2017).

    [25] Y Yang, Y B Sun, Y S Jiang. Structure and photocatalytic property of perovskite and perovskite-related compounds. Mater Chem Phys, 96, 234(2006).

    [26] H Zhang, X Fu, Y Tang et al. Phase segregation due to ion migration in all-inorganic mixed-halide perovskite nanocrystals. Nat Commun, 10, 1088(2019).

    [27] B Y Huang, Z H Liu, C W Wu et al. Polar or nonpolar? That is not the question for perovskite solar cells.. Natl Sci Rev, 8, nwab094(2021).

    [28] Y T Lei, Y K Xu, M Wang et al. Origin, influence, and countermeasures of defects in perovskite solar cells. Small, 17, 2005495(2021).

    [29] J P Wu, S C Liu, Z B Li et al. Strain in perovskite solar cells: Origins, impacts and regulation. Natl Sci Rev, 8, nwab047(2021).

    [30] C K Sin, J Z Zhang, K Tse et al. A brief review of formation energies calculation of surfaces and edges in semiconductors. J Semicond, 41, 061101(2020).

    [31] S Bhattacharya, G K Chandra, P Predeep. A microstructural analysis of 2D halide perovskites: Stability and functionality. Front Nanotechnol, 3, 657948(2021).

    [32] T W Kim, N G Park. Methodologies for structural investigations of organic lead halide perovskites. Mater Today, 38, 67(2020).

    [33] V Kumar, M Nisika. Temporal-spatial-energy resolved advance multidimensional techniques to probe photovoltaic materials from atomistic viewpoint for next-generation energy solutions. Energy Environ Sci, 14, 4760(2021).

    [34] J J Liu. Advances and applications of atomic-resolution scanning transmission electron microscopy. Microsc Microan, 27, 943(2021).

    [35] S M Ribet, A A Murthy, E W Roth et al. Making the most of your electrons: Challenges and opportunities in characterizing hybrid interfaces with STEM. Mater Today, 50, 100(2021).

    [36] F X Zha, Q Y Zhang, H G Dai et al. The scanning tunneling microscopy and spectroscopy of GaSb1–xBix films of a few-nanometer thickness grown by molecular beam epitaxy. J Semicond, 42, 092101(2021).

    [37] Z Yang, S Z Liu. Perspective on the imaging device based on perovskite materials. J Semicond, 41, 050401(2020).

    [38] M U Rothmann, W Li, Y Zhu et al. Direct observation of intrinsic twin domains in tetragonal CH3NH3PbI3. Nat Commun, 8, 14547(2017).

    [39] D L Zhang, Y H Zhu, L M Liu et al. Atomic-resolution transmission electron microscopy of electron beam-sensitive crystalline materials. Science, 359, 675(2018).

    [40] Y Zhu, S Wang, B Li et al. Twist-to-untwist evolution and cation polarization behavior of hybrid halide perovskite nanoplatelets revealed by cryogenic transmission electron microscopy. J Phys Chem Lett, 12, 12187-95(2021).

    [41] Y Yu, D D Zhang, C Kisielowski et al. Atomic resolution imaging of halide perovskites. Nano Lett, 16, 7530(2016).

    [42] G Divitini, S Cacovich, F Matteocci et al. In situ observation of heat-induced degradation of perovskite solar cells. Nat Energy, 1, 15012(2016).

    [43] Y H Seo, J H Kim, D H Kim et al. In situ TEM observation of the heat-induced degradation of single- and triple-cation planar perovskite solar cells. Nano Energy, 77, 105164(2020).

    [44] Y Ge, X L Mu, Y Lu et al. Photoinduced degradation of lead halide perovskite thin films in air. Acta Phys Chim Sin, 36, 1905039(2020).

    [45] M U Rothmann, W Li, J Etheridge et al. Microstructural characterisations of perovskite solar cells - from grains to interfaces: Techniques, features, and challenges. Adv Energy Mater, 7, 1700912(2017).

    [46] M U Rothmann, W Li, Y Zhu et al. Structural and chemical changes to CH3NH3PbI3 induced by electron and gallium ion beams. Adv Mater, 30, 1800629(2018).

    [47] X Y Chen, Z W Wang. Investigating chemical and structural instabilities of lead halide perovskite induced by electron beam irradiation. Micron, 116, 73(2019).

    [48] Y B Li, W J Zhou, Y Z Li et al. Unravelling degradation mechanisms and atomic structure of organic-inorganic halide perovskites by cryo-EM. Joule, 3, 2854(2019).

    [49] T W Kim, T Kondo. Direction-selective electron beam damage to CH3NH3PbI3 based on crystallographic anisotropy. Appl Phys Express, 13, 091001(2020).

    [50] A Alberti, C Bongiorno, E Smecca et al. Pb clustering and PbI2 nanofragmentation during methylammonium lead iodide perovskite degradation. Nat Commun, 10, 2196(2019).

    [51] A Manekkathodi, A Marzouk, J Ponraj et al. Observation of structural phase transitions and PbI2 formation during the degradation of triple-cation double-halide perovskites. ACS Appl Energy Mater, 3, 6302(2020).

    [52] L T Dou, A B Wong, Y Yu et al. Atomically thin two-dimensional organic-inorganic hybrid perovskites. Science, 349, 1518(2015).

    [53] L F Nie, X X Ke, M L Sui. Microstructural study of two-dimensional organic-inorganic hybrid perovskite nanosheet degradation under illumination. Nanomaterials, 9, 722(2019).

    [54] F Li, Y Liu, H Wang et al. Postsynthetic surface trap removal of CsPbX3 (X = Cl, Br, or I) quantum dots via a ZnX2/hexane solution toward an enhanced luminescence quantum yield. Chem Mater, 30, 8546(2018).

    [55] G D Su, B L He, Z K Gong et al. Enhanced charge extraction in carbon-based all-inorganic CsPbBr3 perovskite solar cells by dual-function interface engineering. Electrochim Acta, 328, 135102(2019).

    [56] Z Y Dang, J Shamsi, F Palazon et al. In situ transmission electron microscopy study of electron beam-induced transformations in colloidal cesium lead halide perovskite nanocrystals. ACS Nano, 11, 2124(2017).

    [57] S H Zou, C P Liu, R F Li et al. From nonluminescent to blue-emitting Cs4PbBr6 nanocrystals: Tailoring the insulator bandgap of 0D perovskite through Sn cation doping. Adv Mater, 31, 1900606(2019).

    [58] T Wang, Z Yang, L Yang et al. Atomic-scale insights into the dynamics of growth and degradation of all-inorganic perovskite nanocrystals. J Phys Chem Lett, 11, 4618(2020).

    [59] H Funk, O Shargaieva, A Eljarrat et al. In situ TEM monitoring of phase-segregation in inorganic mixed halide perovskite. J Phys Chem Lett, 11, 4945(2020).

    [60] W Zhou, P Han, X Zhang et al. Lead-free small-bandgap Cs2CuSbCl6 double perovskite nanocrystals. J Phys Chem Lett, 11, 6463(2020).

    [61] S E Creutz, E N Crites, M C de Siena et al. Colloidal nanocrystals of lead-free double-perovskite (elpasolite) semiconductors: Synthesis and anion exchange to access new materials. Nano Lett, 18, 1118(2018).

    [62] Y H Feng, X X Ke, M L Sui. Effect of electron irradiation on inorganic double perovskite solar cell material Cs2AgBiBr6. J Chin Electron Microsc Soc, 39, 1(2020).

    [63] R F Egerton, P Li, M Malac. Radiation damage in the TEM and SEM. Micron, 35, 399(2004).

    [64] Z L Gong, Y Yang. The application of synchrotron X-ray techniques to the study of rechargeable batteries. J Energy Chem, 27, 1566(2018).

    [65] Z H Cai, Y N Wu, S Y Chen. Energy-dependent knock-on damage of organic-inorganic hybrid perovskites under electron beam irradiation: First-principles insights. Appl Phys Lett, 119, 123901(2021).

    [66] Z X Chen, X X Ke, L J Zhu et al. Electron microscopy of organic-inorganic hybrid perovskite solar cell materials: degradation mechanism study and imaging condition optimization. J Chin Electron Microsc Soc, 38, 15(2019).

    [67] M U Rothmann, J S Kim, J Borchert et al. Atomic-scale microstructure of metal halide perovskite. Science, 370, 6516(2020).

    [68] S Chen, X Zhang, J Zhao et al. Atomic scale insights into structure instability and decomposition pathway of methylammonium lead iodide perovskite. Nat Commun, 9, 4807(2018).

    [69] S L Chen, Y Zhang, X W Zhang et al. General decomposition pathway of organic-inorganic hybrid perovskites through an intermediate superstructure and its suppression mechanism. Adv Mater, 32, 2001107(2020).

    [70] S L Chen, P Gao. Challenges, myths, and opportunities of electron microscopy on halide perovskites. J Appl Phys, 128, 010901(2020).

    [71] S L Chen, Y Zhang, J J Zhao et al. Transmission electron microscopy of organic-inorganic hybrid perovskites: Myths and truths. Sci Bull, 65, 1643(2020).

    [72] X G Zhou, C Q Yang, X Sang et al. Probing the electron beam-induced structural evolution of halide perovskite thin films by scanning transmission electron microscopy. J Phys Chem C, 125, 10786(2021).

    [73] B Yuan, E Z Shi, C Liang et al. Structural damage of two-dimensional organic–inorganic halide perovskites. Inorganics, 8, 13(2020).

    [74] W Li, M U Rothmann, Y Zhu et al. The critical role of composition-dependent intragrain planar defects in the performance of MA1–xFAxPbI3 perovskite solar cells. Nat Energy, 6, 624(2021).

    [75] Y Gao, E Shi, S Deng et al. Molecular engineering of organic–inorganic hybrid perovskites quantum wells. Nat Chem, 11, 1151(2019).

    [76] W Pan, H Wu, J Luo et al. Cs2AgBiBr6 single-crystal X-ray detectors with a low detection limit. Nat Photonics, 11, 726(2017).

    [77] J Luo, X Wang, S Li et al. Efficient and stable emission of warm-white light from lead-free halide double perovskites. Nature, 563, 541(2018).

    [78] H T Pham, Y T Yin, G Andersson et al. Unraveling the influence of CsCl/MACl on the formation of nanotwins, stacking faults and cubic supercell structure in FA-based perovskite solar cells. Nano Energy, 87, 106226(2021).

    [79] T A S Doherty, S Nagane, D J Kubicki et al. Stabilized tilted-octahedra halide perovskites inhibit local formation of performance-limiting phases. Science, 374, 1598(2021).

    [80] M C Brennan, M Kuno, S Rouvimov. Crystal structure of individual CsPbBr3 perovskite nanocubes. Inorg Chem, 58, 1555(2019).

    [81] K P Song, L M Liu, D L Zhang et al. Atomic-resolution imaging of halide perovskites using electron microscopy. Adv Energy Mater, 10, 1904006(2020).

    [82] S Chen, C Wu, B Han et al. Atomic-scale imaging of CH3NH3PbI3 structure and its decomposition pathway. Nat Commun, 12, 5516(2021).

    [83] G Y Qiao, D H Guan, S Yuan et al. Perovskite quantum dots encapsulated in a mesoporous metal-organic framework as synergistic photocathode materials. J Am Chem Soc, 143, 14253(2021).

    [84] R dos Reis, H Yang, C Ophus et al. Determination of the structural phase and octahedral rotation angle in halide perovskites. Appl Phys Lett, 112, 071901(2018).

    [85] E J VandenBussche, C P Clark, R J Holmes et al. Mitigating damage to hybrid perovskites using pulsed-beam TEM. ACS Omega, 5, 31867(2020).

    [86] S H Cai, J Dai, Z P Shao et al. Atomically resolved electrically active intragrain interfaces in perovskite semiconductors. J Am Chem Soc, 144, 1910(2022).

    [87] E Shi, B Yuan, S B Shiring et al. Two-dimensional halide perovskite lateral epitaxial heterostructures. Nature, 580, 614(2020).

    [88] H J Jung, C C Stompus, M G Kanatzidis et al. Self-passivation of 2D ruddlesden–popper perovskite by polytypic surface PbI2 encapsulation. Nano Lett, 19, 6109(2019).

    [89] Y Yu, D D Zhang, P D Yang. Ruddlesden-popper phase in two-dimensional inorganic halide perovskites: A plausible model and the supporting observations. Nano Lett, 17, 5489(2017).

    [90] Z Y Dang, B Dhanabalan, A Castelli et al. Temperature-driven transformation of CsPbBr3 nanoplatelets into mosaic nanotiles in solution through self-assembly. Nano Lett, 20, 1808(2020).

    [91] F U Kosasih, S Cacovich, G Divitini et al. Nanometric chemical analysis of beam-sensitive materials: A case study of STEM-EDX on perovskite solar cells. Small Methods, 5, 2000835(2021).

    [92] J Liu, K Song, X Zheng et al. Cyanamide passivation enables robust elemental imaging of metal halide perovskites at atomic resolution. J Phys Chem Lett, 12, 10402(2021).

    [93] R Brescia, S Toso, Q Ramasse et al. Bandgap determination from individual orthorhombic thin cesium lead bromide nanosheets by electron energy-loss spectroscopy. Nanoscale Horiz, 5, 1610(2020).

    [94] Y B Li, W Huang, Y Z Li et al. Opportunities for cryogenic electron microscopy in materials science and nanoscience. ACS Nano, 14, 9263(2020).

    [95] Z W Zhang, Y Cui, R Vila et al. Cryogenic electron microscopy for energy materials. Acc Chem Res, 54, 3505(2021).

    [96] Y M Zhu, Z G Gui, Q Wang et al. Direct atomic scale characterization of the surface structure and planar defects in the organic-inorganic hybrid CH3NH3PbI3 by Cryo-TEM. Nano Energy, 73, 104820(2020).

    [97] Y M Zhu, Q Zhang, X M Yang et al. Probing atomic structure of beam-sensitive energy materials in their native states using cryogenic transmission electron microscopes. iScience, 24, 103385(2021).

    [98] Z Y Dang, J Shamsi, Q A Akkerman et al. Low-temperature electron beam-induced transformations of cesium lead halide perovskite nanocrystals. ACS Omega, 2, 5660(2017).

    [99] N A Rivas, A Babayigit, B Conings et al. Cryo-focused ion beam preparation of perovskite based solar cells for atom probe tomography. PLoS One, 15, e0227920(2020).

    [100] J F Zhou, N N Wei, D L Zhang et al. Cryogenic focused ion beam enables atomic-resolution imaging of local structures in highly sensitive bulk crystals and devices. J Am Chem Soc, 144, 3182(2022).

    [101] J W Lee, S Seo, P Nandi et al. Dynamic structural property of organic-inorganic metal halide perovskite. iScience, 24, 101959(2021).

    [102] S D Stranks. Multimodal microscopy characterization of halide perovskite semiconductors: Revealing a new world (dis)order. Matter, 4, 3852(2021).

    [103] S Thampy, W J Xu, J W P Hsu. Metal oxide-induced instability and its mitigation in halide perovskite solar cells. J Phys Chem Lett, 12, 8495(2021).

    [104] C C Zhang, S Yuan, Y H Lou et al. Physical fields manipulation for high-performance perovskite photovoltaics. Small, 2107556(2022).

    [105] F U Kosasih, C Ducati. Characterising degradation of perovskite solar cells through in situ and operando electron microscopy. Nano Energy, 47, 243(2018).

    [106] S Kundu, T L Kelly. In situ studies of the degradation mechanisms of perovskite solar cells. EcoMat, 2, e12025(2020).

    [107] F McGrath, U V Ghorpade, K M Ryan. Synthesis and dimensional control of CsPbBr3 perovskite nanocrystals using phosphorous based ligands. J Chem Phys, 152, 174702(2020).

    [108] Q Jeangros, M Duchamp, J Werner et al. In situ TEM analysis of organic-inorganic metal-halide perovskite solar cells under electrical bias. Nano Lett, 16, 7013(2016).

    [109] H J Jung, D Kim, S Kim et al. Stability of halide perovskite solar cell devices: in situ observation of oxygen diffusion under biasing. Adv Mater, 30, 1802769(2018).

    [110] M C Kim, N Ahn, D Y Cheng et al. Imaging real-time amorphization of hybrid perovskite solar cells under electrical biasing. ACS Energy Lett, 6, 3530(2021).

    [111] C Zhang, J F S Fernando, K L Firestein et al. Crystallography-derived optoelectronic and photovoltaic properties of CsPbBr3 perovskite single crystals as revealed by in situ transmission electron microscopy. Appl Mater Today, 20, 100788(2020).

    [112] M A Akhavan Kazemi, P Raval, K Cherednichekno et al. Molecular-level insight into correlation between surface defects and stability of methylammonium lead halide perovskite under controlled humidity. Small Methods, 5, 2000834(2021).

    [113] F Y Qin, Z W Wang, Z L Wang. Anomalous growth and coalescence dynamics of hybrid perovskite nanoparticles observed by liquid-cell transmission electron microscopy. ACS Nano, 10, 9787(2016).

    Xiaomei Wu, Xiaoxing Ke, Manling Sui. Recent progress on advanced transmission electron microscopy characterization for halide perovskite semiconductors[J]. Journal of Semiconductors, 2022, 43(4): 041106
    Download Citation