• Journal of Semiconductors
  • Vol. 40, Issue 10, 101302 (2019)
Shujie Pan, Victoria Cao, Mengya Liao, Ying Lu, Zizhuo Liu, Mingchu Tang, Siming Chen, Alwyn Seeds, and Huiyun Liu
Author Affiliations
  • Department of Electronic and Electrical Engineering, University College London, London WC1E 7JE, UK
  • show less
    DOI: 10.1088/1674-4926/40/10/101302 Cite this Article
    Shujie Pan, Victoria Cao, Mengya Liao, Ying Lu, Zizhuo Liu, Mingchu Tang, Siming Chen, Alwyn Seeds, Huiyun Liu. Recent progress in epitaxial growth of III–V quantum-dot lasers on silicon substrate[J]. Journal of Semiconductors, 2019, 40(10): 101302 Copy Citation Text show less
    References

    [1] G T Reed, G Mashanovich, F Y Gardes et al. Silicon optical modulators. Nat Photonics, 4, 518(2010).

    [2] X Xiao, H Xu, X Y Li et al. High-speed, low-loss silicon Mach–Zehnder modulators with doping optimization. Opt Express, 21, 4116(2013).

    [3] M Streshinsky, R Ding, Y Liu et al. Low power 50 Gb/s silicon traveling wave Mach-Zehnder modulator near 1300 nm. Opt Express, 21, 30350(2013).

    [4] O I Dosunmu, D D Can, M K Emsley et al. High-speed resonant cavity enhanced Ge photodetectors on reflecting Si substrates for 1550-nm operation. IEEE Photonics Technol Lett, 17, 175(2005).

    [5] T Yin, R Cohen, M M Morse et al. 31 GHz Ge n–i–p waveguide photodetectors on silicon-on-insulator substrate. Opt Express, 15, 13965(2007).

    [6] L Vivien, A Polzer, D Marris-Morini et al. Zero-bias 40 Gbit/s germanium waveguide photodetector on silicon. Opt Express, 20, 1096(2012).

    [7] J F Bauters, M L Davenport, M J R Heck. Silicon on ultra-low-loss waveguide photonic integration platform. Opt Express, 21, 544(2013).

    [8] M J R Heck, J F Bauters, M L Davenport et al. Ultra-low loss waveguide platform and its integration with silicon photonics. Laser Photon Rev, 8, 667(2014).

    [9] H Y Liu, T Wang, Q Jiang et al. Long-wavelength InAs/GaAs quantum-dot laser diode monolithically grown on Ge substrate. Nat Photonics, 5, 416(2011).

    [10] D Liang, J E Bowers. Recent progress in lasers on silicon. Nat Photonics, 4, 511(2010).

    [11] S Chen et al. Electrically pumped continuous-wave III–V quantum dot lasers on silicon. Nat Photonics, 10, 307(2016).

    [12] K Tanabe, K Watanabe, Y Arakawa. III–V/Si hybrid photonic devices by direct fusion bonding. Sci Rep, 2349(2012).

    [13] E Tournié, L Cerutti, J B Rodriguez et al. Metamorphic III–V semiconductor lasers grown on silicon. MRS Bull, 41, 218(2016).

    [14] R Fischer, W T Masselink, J Klem et al. Growth and properties of GaAs/AlGaAs on nonpolar substrates using molecular beam epitaxy. J Appl Phys, 58, 374(1985).

    [15] W I Wang. Molecular beam epitaxial growth and material properties of GaAs and AlGaAs on Si (100). J Appl Phys, 44, 1149(1984).

    [16] Q Li, M Lau. Epitaxial growth of highly mismatched III–V materials on (001) silicon for electronics and optoelectronics. Prog Cryst Growth Charact Mater, 63, 105(2017).

    [17] R Alcotte, M Martin, J Moeyaert et al. Epitaxial growth of antiphase boundary free GaAs layer on 300 mm Si(001) substrate by metalorganic chemical vapour deposition with high mobility. APL Mater, 4, 46101(2016).

    [18] M Akiyama, Y Kawarada, K Kaminishi. Growth of single domain gaas layer on (100)-oriented Si substrate by MOCVD. Jpn J Appl Phys, 23, L843(1984).

    [19] J C Norman, D Jung, Y Wan et al. Perspective: The future of quantum dot photonic integrated circuits. APL Photonics, 3, 30901(2018).

    [20] J Wu, S Chen, A Seeds et al. Quantum dot optoelectronic devices: lasers, photodetectors and solar cells. J Phys D, 48, 363001(2015).

    [21]

    [22] H Kroemer. A proposed class of hetero-junction injection lasers. Proc IEEE, 51, 1782(1963).

    [23] Z I Alferov. AlAs–GaAs heterojunction injection lasers with a low room-temperature threshold. Sov Phys Semicond, 3, 1107(1970).

    [24]

    [25] E Kapon, S Simhony, R Bhat et al. Single quantum wire semiconductor lasers. Appl Phys Lett, 55, 2715(1989).

    [26] Y Arakawa, H Sakaki. Multidimensional quantum well laser and temperature dependence of its threshold current. Appl Phys Lett, 40, 939(1982).

    [27] N Kirstaedter, N N Ledentsov, M Grundmann et al. Low threshold, large To injection laser emission from (InGa)As quantum dots. Electron Lett, 30, 1416(1994).

    [28] K Nishi, K Takemasa, M Sugawara et al. Development of quantum dot lasers for data-com and silicon photonics applications. IEEE J Sel Top Quantum Electron, 23, 1(2017).

    [29] K Nishi, T Kageyama, M Yamaguchi et al. Molecular beam epitaxial growths of high-optical-gain InAs quantum dots on GaAs for long-wavelength emission. J Cryst Growth, 378, 459(2013).

    [30] B Ilahi, M Souaf, M Baira et al. Evolution of InAs/GaAs QDs size with the growth rate: a numerical investigation. J Nanomater, 2015, 1(2015).

    [31] D Leonard, S Fafard, K Pond et al. Structural and optical properties of self-assembled InGaAs quantum dots. J Vac Sci Technol B, 12, 2516(1994).

    [32] K Nishi, H Saito, S Sugou et al. A narrow photoluminescence linewidth of 21 meV at 1.35 μm from strain-reduced InAs quantum dots covered by In0.2Ga0.8As grown on GaAs substrates. Appl Phys Lett, 74, 1111(1999).

    [33] K Otsubo, N Hatori, M Ishida et al. Temperature-insensitive eye-opening under 10-Gb/s modulation of 1.3-μm P-doped quantum-dot lasers without current adjustments. Jpn J Appl Phys, 43, L1124(2004).

    [34] K Takada, Y Tanaka, T Matsumoto et al. Wide-temperature-range 10.3 Gbit/s operations of 1.3 μm high-density quantum-dot DFB lasers. Electron Lett, 47, 206(2011).

    [35] A Capua et al. Direct correlation between a highly damped modulation response and ultra low relative intensity noise in an InAs/GaAs quantum dot laser. Opt Express, 15, 5388(2007).

    [36] D Jung, Z Zhang, J Norman et al. Highly reliable low-threshold inas quantum dot lasers on on-axis (001) Si with 87% injection efficiency. ACS Photonics, 5, 1094(2018).

    [37] I Ovid’ko. Relaxation mechanisms in strained nanoislands. Phys Rev Lett, 88, 46103(2002).

    [38] K Tillmann, A Förster. Critical dimensions for the formation of interfacial misfit dislocations of In0.6Ga0.4As islands on GaAs(001). Thin Solid Films, 368, 93(2000).

    [39] Z Mi, J Yang, P Bhattacharya et al. High-performance quantum dot lasers and integrated optoelectronics on Si. Proc IEEE, 97, 1239(2009).

    [40] B Shi, Q Li, K M Lau. Self-organized InAs/InAlGaAs quantum dots as dislocation filters for InP films on (001) Si. J Cryst Growth, 464, 28(2017).

    [41] K Linder, J Phillips, O Qasaimeh et al. Self-organized In0.4Ga0.6As quantum-dot lasers grown on Si substrates. Appl Phys Lett, 70, 1355(1999).

    [42] T Wang, H Liu, A Lee et al. 1.3-μm InAs/GaAs quantum-dot lasers monolithically grown on Si substrates. Opt Express, 19, 11381(2011).

    [43] A D Lee, Q Jiang, M C Tang et al. InAs/GaAs quantum-dot lasers monolithically grown on Si, Ge, and Ge-on-Si substrates. IEEE J Sel Top Quantum Electron, 19, 1901107(2013).

    [44] S M Chen, M Tang, J Wu et al. 1.3-μm InAs/GaAs quantum-dot lasers monolithically grown on Si substrates using InAlAs/GaAs dislocation filter layers. Opt Express, 22, 11528(2014).

    [45] J R Orchard, S Shutts, A Sobiesierski et al. In situ annealing enhancement of the optical properties and laser device performance of InAs quantum dots grown on Si substrates. Opt Express, 24, 6196(2016).

    [46] Q Jiang, M C Tang, J Wu et al. 1.3 μm InAs/GaAs quantum-dot laser monolithically grown on Si substrates operating over 100 °C. Electron Lett, 50, 1467(2014).

    [47] M Liao, S Chen, J S Park et al. III–V quantum-dot lasers monolithically grown on silicon. Semicond Sci Technol, 33, 123002(2018).

    [48] M Tang, S M Chen, J Wu et al. Optimizations of defect filter layers for 1.3-μm InAs/GaAs quantum-dot lasers monolithically grown on Si substrates. IEEE J Sel Top Quantum Electron, 22, 50(2016).

    [49] M Liao, S M Chen, Z X Liu et al. Low-noise 13 μm InAs/GaAs quantum dot laser monolithically grown on silicon. Photonics Res, 6, 1062(2018).

    [50] C Hantschmann, P P Vasil'ev, S M Chen et al. Gain switching of monolithic 1.3 μm InAs/GaAs quantum dot lasers on silicon. J Light Technol, 36, 3837(2018).

    [51] C Hantschmann, P P Vasil’ev, A Wonfor et al. Understanding the bandwidth limitations in monolithic 1.3 μm InAs/GaAs quantum dot lasers on silicon. J Light Technol, 37, 949(2019).

    [52]

    [53] C Merckling, N Waldron, S Jiang et al. Heteroepitaxy of InP on Si(001) by selective-area metal organic vapor-phase epitaxy in sub-50 nm width trenches: The role of the nucleation layer and the recess engineering. J Appl Phys, 115, 23710(2014).

    [54] Z Wang, B Tian, M Pantouvaki et al. Room-temperature InP distributed feedback laser array directly grown on silicon. Nat Photonics, 9, 837(2015).

    [55] B Tian, Z C Wang, M Pantouvaki et al. Room temperature O-band DFB laser array directly grown on (001) silicon. Nano Lett, 17, 559(2017).

    [56] Y Wang, S M Chen, Y Yu et al. Monolithic quantum-dot distributed feedback laser array on silicon. Optica, 5, 528(2018).

    [57] H C Kim, J Wiedmann, K Matsui et al. 1.5-μm-wavelength distributed feedback lasers with deeply etched first-order vertical grating. Jpn J Appl Phys, 40, L1107(2001).

    [58] K J Vahala. Optical microcavities. Nature, 424, 839(2003).

    [59] M V Maximov, N V Kryzhanovskaya, A M Nadtochiy et al. Ultrasmall microdisk and microring lasers based on InAs/InGaAs/GaAs quantum dots. Nanoscale Res Lett, 9, 657(2014).

    [60] N V Kryzhanovskaya, A Z Zhukov, M V Maximov et al. Room temperature lasing in 1-μm microdisk quantum dot lasers. IEEE J Sel Top Quantum Electron, 21, 709(2015).

    [61] N Kryzhanovskaya, v A E Zhukov, M V Maximov et al. Heat-sink free CW operation of injection microdisk lasers grown on Si substrate with emission wavelength beyond 13 μm. Opt Lett, 42, 3319(2017).

    [62] N Kryzhanovskaya, E Moiseev, Y Polubavkina et al. Elevated temperature lasing from injection microdisk lasers on silicon. Laser Phys Lett, 15, 15802(2018).

    [63] K Volz, A Beyer, e W Witte et al. GaP-nucleation on exact Si (001) substrates for III/V device integration. J Cryst Growth, 315, 37(2011).

    [64] A Y Liu, J Peters, X Huang et al. Electrically pumped continuous-wave 13 μm quantum-dot lasers epitaxially grown on on-axis (001) GaP/Si. Opt Lett, 42, 338(2017).

    [65] D Jung, Y Song, M Lee et al. InGaAs/GaAs quantum well lasers grown on exact GaP/Si (001). Electron Lett, 50, 1226(2014).

    [66] Q Li, K W Ng, K M Lau. Growing antiphase-domain-free GaAs thin films out of highly ordered planar nanowire arrays on exact (001) silicon. Appl Phys Lett, 106, 72105(2015).

    [67] Q Li, Y T Wan, A Y Liu et al. 13-μm InAs quantum-dot micro-disk lasers on V-groove patterned and unpatterned (001) silicon. Opt Express, 24, 21038(2016).

    [68] S M Chen, M Y Liao, M C Tang et al. Electrically pumped continuous-wave 1.3 μm InAs/GaAs quantum dot lasers monolithically grown on on-axis Si (001) substrates. Opt Express, 25, 4632(2017).

    [69] K Li, Z Liu, M Tang et al. O-band InAs/GaAs quantum dot laser monolithically integrated on exact (001) Si substrate. J Cryst Growth, 511, 56(2019).

    [70] T J Zhou, M C Tang, G H Xiang et al. Ultra-low threshold InAs/GaAs quantum dot microdisk lasers on planar on-axis Si (001) substrates. Optica, 6, 430(2019).

    Shujie Pan, Victoria Cao, Mengya Liao, Ying Lu, Zizhuo Liu, Mingchu Tang, Siming Chen, Alwyn Seeds, Huiyun Liu. Recent progress in epitaxial growth of III–V quantum-dot lasers on silicon substrate[J]. Journal of Semiconductors, 2019, 40(10): 101302
    Download Citation