• Journal of Semiconductors
  • Vol. 40, Issue 12, 121801 (2019)
Nasir Alfaraj, Jung-Wook Min, Chun Hong Kang, Abdullah A. Alatawi, Davide Priante, Ram Chandra Subedi, Malleswararao Tangi, Tien Khee Ng, and Boon S. Ooi
Author Affiliations
  • Photonics Laboratory, Computer, Electrical and Mathematical Sciences and Engineering Division (CEMSE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia
  • show less
    DOI: 10.1088/1674-4926/40/12/121801 Cite this Article
    Nasir Alfaraj, Jung-Wook Min, Chun Hong Kang, Abdullah A. Alatawi, Davide Priante, Ram Chandra Subedi, Malleswararao Tangi, Tien Khee Ng, Boon S. Ooi. Deep-ultraviolet integrated photonic and optoelectronic devices: A prospect of the hybridization of group III–nitrides, III–oxides, and two-dimensional materials[J]. Journal of Semiconductors, 2019, 40(12): 121801 Copy Citation Text show less
    References

    [1] L Wang, R J Xie, T Suehiro et al. Down-conversion nitride materials for solid state lighting: Recent advances and perspectives. Chem Rev, 118, 1951(2018).

    [2] A I Alhassan, N G Young, R M Farrell et al. Development of high performance green c-plane III-nitride light-emitting diodes. Opt Express, 26, 5591(2018).

    [3] S Pimputkar, J S Speck, S P DenBaars et al. Prospects for LED lighting. Nat Photonics, 3, 180(2009).

    [4] J S Kim, P E Jeon, Y H Park et al. White-light generation through ultraviolet-emitting diode and white-emitting phosphor. Appl Phys Lett, 85, 3696(2004).

    [5] G Matafonova, V Batoev. Recent advances in application of UV light-emitting diodes for degrading organic pollutants in water through advanced oxidation processes: A review. Water Res, 132, 177(2018).

    [6] J Chen, S Loeb, m J H Kim. LED revolution: fundamentals and prospects for UV disinfection applications. Environ Sci: Water Res Technol, 3, 188(2017).

    [7] Q Chen, H Zhang, J Dai. Enhanced the optical power of AlGaN-based deep ultraviolet light-emitting diode by optimizing mesa sidewall angle. IEEE Photonics J, 10, 6100807(2018).

    [8] H Hirayama, S Fujikawa, N Kamata. Recent progress in AlGaN-based deep-UV LEDs. Electron Commun Jpn, 98, 1(2015).

    [9] Y Aoyagi, M Takeuchi, K Yoshida et al. High-sensitivity ozone sensing using 280 nm deep ultraviolet light-emitting diode for detection of natural hazard ozone. J Environ Prot, 3, 695(2012).

    [10] M Würtele, T Kolbe, M Lipsz et al. Application of GaN-based ultraviolet-C light emitting diodes-UV LEDs-for water disinfection. Water Res, 45, 1481(2011).

    [11]

    [12] K Jasuja, K Ayinde, C L Wilson et al. Introduction of protonated sites on exfoliated, large-area sheets of hexagonal boron nitride. ACS Nano, 12, 9931(2018).

    [13] D Pacilé, J C Meyer, Ç Ö Girit et al. The two-dimensional phase of boron nitride: Few-atomic-layer sheets and suspended membranes. Appl Phys Lett, 92, 133107(2008).

    [14] S Srinivasan, M Stevens, F A Ponce et al. Carrier dynamics and electrostatic potential variation in InGaN quantum wells grown on GaN pyramidal planes. Appl Phys Lett, 89, 231908(2006).

    [15] R T ElAfandy, M A Majid, T K Ng et al. Exfoliation of threading dislocation-free, singlecrystalline, ultrathin gallium nitride nanomembranes. Adv Funct Mater, 24, 2305(2014).

    [16]

    [17] N G Orji, M Badaroglu, B M Barnes et al. Metrology for the next generation of semiconductor devices. Nat Electron, 1, 532(2018).

    [18] T Ayari, S Sundaram, X Li et al. Heterogeneous integration of thin-film InGaN-based solar cells on foreign substrates with enhanced performance. ACS Photonics, 5, 3003(2018).

    [19] S Liu, B Sheng, X Wang et al. Molecular beam epitaxy of single-crystalline aluminum film for low threshold ultraviolet plasmonic nanolasers. Appl Phys Lett, 112, 231904(2018).

    [20] C Yuan, J W Pomeroy, M Kuball. Above bandgap thermoreflectance for non-invasive thermal characterization of GaN-based wafers. Appl Phys Lett, 113, 102101(2018).

    [21] J Jiang, W Guo, H Xu et al. Performance enhancement of ultraviolet light emitting diode incorporating Al nanohole arrays. Nanotechnology, 29, 45LT01(2018).

    [22] T Ishibe, T Kurokawa, N Naruse et al. Resistive switching at the high quality metal/insulator interface in Fe3O4/SiO2/α-FeSi2/Si stacking structure. Appl Phys Lett, 113, 141601(2018).

    [23] D Priante, B Janjua, A Prabaswara et al. Highly uniform ultraviolet-A quantum-confined AlGaN nanowire LEDs on metal/silicon with a TaN interlayer. Opt Mater Express, 7, 4214(2017).

    [24] H Sumikura, E Kuramochi, M Notomi. Nonlinear optical absorption of beryllium isoelectronic centers doped in silicon waveguides. Appl Phys Lett, 113, 141101(2018).

    [25]

    [26] R Zhang, B Zhao, K Huang et al. Silicon-on-insulator with hybrid orientations for heterogeneous integration of GaN on Si (100) substrate. AIP Adv, 8, 055323(2018).

    [27] S S Patil, M A Johar, M A Hassan et al. Anchoring MWCNTs to 3D honeycomb ZnO/GaN heterostructures to enhancing photoelectrochemical water oxidation. Appl Catal B, 237, 791(2018).

    [28] Y Ajima, Y Nakamura, K Murakami et al. Room-temperature bonding of GaAs//Si and GaN//GaAs wafers with low electrical resistance. Appl Phys Express, 11, 106501(2018).

    [29] X Liu, C Sun, B Xiong et al. Generation of multiple near-visible comb lines in an AlN microring via χ(2) and χ(3) optical nonlinearities. Appl Phys Lett, 113, 171106(2018).

    [30] C Zhao, N Alfaraj, R C Subedi et al. III-nitride nanowires on unconventional substrates: From materials to optoelectronic device applications. Prog Quantum Electron, 61, 1(2018).

    [31] J P Houlton, M D Brubaker, D O Martin et al. An optical Bragg scattering readout for nano-mechanical resonances of GaN nanowire arrays. Appl Phys Lett, 113, 123102(2018).

    [32] A Maity, S J Grenadier, J Li et al. Hexagonal boron nitride neutron detectors with high detection efficiencies. J Appl Phys, 123, 044501(2018).

    [33] A Maity, S J Grenadier, J Li et al. Toward achieving flexible and high sensitivity hexagonal boron nitride neutron detectors. Appl Phys Lett, 111, 033507(2017).

    [34] K Ahmed, R Dahal, A Weltz et al. Solid-state neutron detectors based on thickness scalable hexagonal boron nitride. Appl Phys Lett, 110, 023503(2017).

    [35] D Alden, T Troha, R Kirste et al. Quasi-phase-matched second harmonic generation of UV light using AlN waveguides. Appl Phys Lett, 114, 103504(2019).

    [36] A W Bruch, X Liu, X Guo et al. 17000%/W second-harmonic conversion efficiency in single-crystalline aluminum nitride microresonators. Appl Phys Lett, 113, 131102(2018).

    [37] C Du, W Hu, g Z L Wang. Recent progress on piezotronic and piezo-phototronic effects in III-group nitride devices and applications. Adv Eng Mater, 20, 1700760(2018).

    [38] H J Kim, S I Jung, J Segovia-Fernandez et al. The impact of electrode materials on 1/f noise in piezoelectric AlN contour mode resonators. AIP Adv, 8, 055009(2018).

    [39] C Cassella, G Chen, Z Qian et al. RF passive components based on aluminum nitride crosssectional lamé-mode MEMS resonators. IEEE Trans Electron Devices, 64, 237(2017).

    [40] X Wang, J Song, F Zhang et al. Electricity generation based on one-dimensional group-III nitride nanomaterials. Adv Mater, 22, 2155(2010).

    [41] R Yu, W Wu, Y Ding et al. GaN nanobelt-based strain-gated piezotronic logic devices and computation. ACS Nano, 7, 6403(2013).

    [42] H Zhang, Q Zhang, M Lin et al. A GaN/InGaN/AlGaN MQW RTD for versatile MVL applications with improved logic stability. J Semicond, 39, 074004(2018).

    [43] H Springbett, K Gao, J Jarman et al. Improvement of single photon emission from InGaN QDs embedded in porous micropillars. Appl Phys Lett, 113, 101107(2018).

    [44] R Bourrellier, S Meuret, A Tararan et al. Bright UV single photon emission at point defects in h-BN. Nano Lett, 16, 4317(2016).

    [45] T Vuong, G Cassabois, P Valvin et al. Phonon-photon mapping in a color center in hexagonal boron nitride. Phys Rev Lett, 117, 097402(2016).

    [46] R T Elafandy, M Ebaid, J W Min et al. Flexible InGaN nanowire membranes for enhanced solar water splitting. Opt Express, 26, A640(2018).

    [47] H Zhang, M Ebaid, J W Min et al. Enhanced photoelectrochemical performance of InGaN-based nanowire photoanodes by optimizing the ionized dopant concentration. J Appl Phys, 124, 083105(2018).

    [48] Y J Kim, G J Lee, S Kim et al. Efficient light absorption by GaN truncated nanocones for high performance water splitting applications. ACS Appl Mater Interfaces, 10, 28672(2018).

    [49] M Ebaid, J W Min, C Zhao et al. Water splitting to hydrogen over epitaxially grown InGaN nanowires on a metallic titanium/silicon template: reduced interfacial transfer resistance and improved stability to hydrogen. J Mater Chem A, 6, 6922(2018).

    [50] M Ebaid, D Priante, G Liu et al. Unbiased photocatalytic hydrogen generation from pure water on stable Ir-treated In0.33Ga0.67N nanorods. Nano Energy, 37, 158(2017).

    [51] T Sekimoto, H Hashiba, S Shinagawa et al. Wireless InGaN-Si/Pt device for photo-electrochemical water splitting. Jpn J Appl Phys, 55, 088004(2016).

    [52] C H Lin, H C Fu, B Cheng et al. A flexible solar-blind 2D boron nitride nanopaper-based photodetector with high thermal resistance. NPJ 2D Mater Appl, 2, 23(2018).

    [53] X Tan, Y J Lv, X Y Zhou et al. AlGaN/GaN pressure sensor with a Wheatstone bridge structure. AIP Adv, 8, 085202(2018).

    [54] F Mehnke, M Guttmann, J Enslin et al. Gas sensing of nitrogen oxide utilizing spectrally pure deep UV LEDs. IEEE J Sel Top Quantum Electron, 23, 29(2017).

    [55] J Y Pyo, J H Jeon, Y Koh et al. AlGaN/GaN high-electronmobility transistor pH sensor with extended gate platform. AIP Adv, 8, 085106(2018).

    [56] H Cao, Z Ma, B Sun et al. Composite degradation model and corresponding failure mechanism for mid-power GaN-based white LEDs. AIP Adv, 8, 065108(2018).

    [57] B Janjua, T K Ng, C Zhao et al. True yellow light-emitting diodes as phosphor for tunable color-rendering index laser-based white light. ACS Photonics, 3, 2089(2016).

    [58] W Guo, A Banerjee, P Bhattacharya et al. InGaN/GaN disk-in-nanowire white light emitting diodes on (001) silicon. Appl Phys Lett, 98, 193102(2011).

    [59] C Lee, C Shen, C Cozzan et al. Gigabit-per-second white light-based visible light communication using near-ultraviolet laser diode and red-, green-, and blue-emitting phosphors. Opt Express, 25, 17480(2017).

    [60] F Yu, K Strempel, M F Fatahilah et al. Normally off vertical 3-D GaN nanowire MOSFETs with inverted p-GaN channel. IEEE Trans Electron Devices, 65, 2439(2018).

    [61] L Yin, G Du, X Liu. Impact of ambient temperature on the self-heating effects in FinFETs. J Semicond, 39, 094011(2018).

    [62] N Alfaraj, A M Hussain, G A Torres Sevilla et al. Functional integrity of flexible n-channel metal-oxide-semiconductor fieldeffect transistors on a reversibly bistable platform. Appl Phys Lett, 107, 174101(2015).

    [63] X Zhou, X Tan, Y Wang et al. Coeffect of trapping behaviors on the performance of GaN-based devices. J Semicond, 39, 094007(2018).

    [64] J Zhao, Y Xing, K Fu et al. Influence of channel/back-barrier thickness on the breakdown of AlGaN/GaN MISHEMTs. J Semicond, 39, 094003(2018).

    [65] G Mallick, R M Elder. Graphene/hexagonal boron nitride heterostructures: Mechanical properties and fracture behavior from nanoindentation simulations. Appl Phys Lett, 113, 121902(2018).

    [66] Z Zhang, J Chen. Thermal conductivity of nanowires. Chin Phys B, 27, 035101(2018).

    [67] A Sztein, J E Bowers, S P DenBaars et al. Polarization field engineering of GaN/AlN/AlGaN superlattices for enhanced thermoelectric properties. Appl Phys Lett, 104, 042106(2014).

    [68] A Sztein, J E Bowers, S P DenBaars et al. Thermoelectric properties of lattice matched InAlN on semi-insulating GaN templates. J Appl Phys, 112, 083716(2012).

    [69] A Sztein, H Ohta, J Sonoda et al. GaN-based integrated lateral thermoelectric device for micro-power generation. Appl Phys Express, 2, 111003(2009).

    [70] W Liu, A A Balandin. Thermoelectric effects in wurtzite GaN and AlxGa1–xN alloys. J Appl Phys, 97, 123705(2005).

    [71]

    [72] D Wang, Z Y Chen, T Wang et al. Repeatable asymmetric resonant tunneling in AlGaN/GaN double barrier structures grown on sapphire. Appl Phys Lett, 114, 073503(2019).

    [73] M Franckié, L Bosco, M Beck et al. Two-well quantum cascade laser optimization by non-equilibrium Green’s function modelling. Appl Phys Lett, 112, 021104(2018).

    [74]

    [75] F Wang, J Lee, D J Phillips et al. A high-efficiency regime for gas-phase terahertz lasers. Proc Natl Acad Sci USA, 115, 6614(2018).

    [76] J Encomendero, R Yan, A Verma et al. Room temperature microwave oscillations in GaN/AlN resonant tunneling diodes with peak current densities up to 220 kA/cm2. Appl Phys Lett, 112, 103101(2018).

    [77] J Encomendero, F A Faria, S M Islam et al. New tunneling features in polar III-nitride resonant tunneling diodes. Phys Rev X, 7, 041017(2017).

    [78] T E P Alves, C Kolodziej, C Burda et al. Effect of particle shape and size on the morphology and optical properties of zinc oxide synthesized by the polyol method. Mater Des, 146, 125(2018).

    [79] M T Ghoneim, A Sadraei, de Souza P et al. A protocol to characterize pH sensing materials and systems. Small Methods, 3, 1800265(2019).

    [80] W Lan, Z Yang, Y Zhang et al. Novel transparent high-performance AgNWs/ZnO electrodes prepared on unconventional substrates with 3D structured surfaces. Appl Surf Sci, 433, 821(2018).

    [81] B P Zhang, N T Binh, K Wakatsuki et al. Growth of ZnO/MgZnO quantum wells on sapphire substrates and observation of the two-dimensional confinement effect. Appl Phys Lett, 86, 032105(2005).

    [82] T Maeda, T Narita, M Kanechika et al. Franz-Keldysh effect in GaN p–n junction diode under high reverse bias voltage. Appl Phys Lett, 112, 252104(2018).

    [83] T Maeda, X Chi, M Horita et al. Phonon-assisted optical absorption due to Franz-Keldysh effect in 4H-SiC p-n junction diode under high reverse bias voltage. Appl Phys Express, 11, 091302(2018).

    [84] G Bridoux, M Villafuerte, J M Ferreyra et al. Franz-Keldysh effect in epitaxial ZnO thin films. Appl Phys Lett, 112, 092101(2018).

    [85] M Tangi, J W Min, D Priante et al. Observation of piezotronic and piezophototronic effects in n-InGaN nanowires/Ti grown by molecular beam epitaxy. Nano Energy, 54, 264(2018).

    [86] H Elahi, M Eugeni, P Gaudenzi. A review on mechanisms for piezoelectric-based energy harvesters. Energies, 11, 1850(2018).

    [87] M Dan, G Hu, L Li et al. High performance piezotronic logic nanodevices based on GaN/InN/GaN topological insulator. Nano Energy, 50, 544(2018).

    [88]

    [89] C Zhao, M Ebaid, H Zhang et al. Quantified hole concentration in AlGaN nanowires for high-performance ultraviolet emitters. Nanoscale, 10, 15980(2018).

    [90] Y H Liang, E Towe. Progress in efficient doping of high aluminum-containing group III-nitrides. Appl Phys Rev, 5, 011107(2018).

    [91] H Amano, K Kito M Hiramatsu et al. P-type conduction in Mg-doped GaN treated with low-energy electron beam irradiation (LEEBI). Jpn J Appl Phys, 28, L2112(1989).

    [92] I Akasaki, H Amano, M Kito et al. Photoluminescence of Mg-doped p-type GaN and electroluminescence of GaN p–n junction LED. J Lumin, 48, 666(1991).

    [93] S Nakamura, M Senoh, Nagahama S et al. InGaN/GaN/AlGaN-based laser diodes with modulation-doped strained-layer superlattices grown on an epitaxially laterally overgrown GaN substrate. Appl Phys Lett, 72, 211(1998).

    [94] S Nakamura, M Senoh, a S Nagahama et al. InGaN-based multi-quantum-well-structure laser diodes. Jpn J Appl Phys, 35, L74(1996).

    [95] S Nakamura, T Mukai, M Senoh. Candela-class high-brightness InGaN/AlGaN double-heterostructure blue-lightemitting diodes. Appl Phys Lett, 64, 1687(1994).

    [96] H Amano, M Kitoh, K Hiramatsu et al. Growth and luminescence properties of Mg-doped GaN prepared by MOVPE. J Electrochem Soc, 137, 1639(1990).

    [97] Y Bilenko, A Lunev, X Hu et al. 10 milliwatt pulse operation of 265 nm AlGaN light emitting diodes. Jpn J Appl Phys, 44, L98(2004).

    [98] I J Bigio, J R Mourant. Ultraviolet and visible spectroscopies for tissue diagnostics: fluorescence spectroscopy and elastic-scattering spectroscopy. Phys Med Biol, 42, 803(1997).

    [99] H Hirayama, N Maeda, S Fujikawa et al. Recent progress and future prospects of AlGaN-based high-efficiency deep-ultraviolet light-emitting diodes. Jpn J Appl Phys, 53, 100209(2014).

    [100] B S Kang, H T Wang, F Ren et al. Electrical detection of biomaterials using AlGaN/GaN high electron mobility transistors. J App Phys, 104, 8(2008).

    [101] H K Cho, A Külberg, N L Ploch et al. Bow reduction of AlInGaN-based deep UV LED wafers using focused laser patterning. IEEE Photonics Technol Lett, 30, 1792(2018).

    [102] B Janjua, D Priante, A Prabaswara et al. Ultraviolet-A LED based on quantum-disks-in-AlGaN-nanowires–Optimization and device reliability. IEEE Photonics J, 10, 2200711(2018).

    [103]

    [104]

    [105] X Wang, W Peng, R Yu et al. Simultaneously enhancing light emission and suppressing efficiency droop in GaN microwire-based ultraviolet light-emitting diode by the piezo-phototronic effect. Nano Lett, 17, 3718(2017).

    [106] Z Y Al Balushi, J M Redwing. In situ stress measurements during MOCVD growth of thick N-polar InGaN. J Appl Phys, 122, 085303(2017).

    [107] Z Y Al Balushi, J M Redwing. The effect of polarity on MOCVD growth of thick InGaN. Appl Phys Lett, 110, 022101(2017).

    [108] M McLaurin, T E Mates, F Wu et al. Growth of p-type and n-type m-plane GaN by molecular beam epitaxy. J Appl Phys, 100, 063707(2006).

    [109] T Sugahara, H Sato, M Hao et al. Direct evidence that dislocations are non-radiative recombination centers in GaN. Jpn J Appl Phys, 37, L398(1998).

    [110] P Boguslawski, J Bernholc. Doping properties of C, Si, and Ge impurities in GaN and AlN. Phys Rev B, 56, 9496(1997).

    [111] Z Chen, X Zhang, Z Dou et al. High-brightness blue light-emitting diodes enabled by a directly grown graphene buffer layer. Adv Mater, 30, 1801608(2018).

    [112] Y Qi, Y Wang, Z Pang et al. Fast growth of strain-free AlN on graphene-buffered sapphire. J Am Chem Soc, 140, 11935(2018).

    [113] P Yan, Q Tian, G Yang et al. Epitaxial growth and interfacial property of monolayer MoS2 on gallium nitride. RSC Adv, 8, 33193(2018).

    [114] T Takano, T Mino, J Sakai et al. Deep-ultraviolet light-emitting diodes with external quantum efficiency higher than 20% at 275 nm achieved by improving light-extraction efficiency. Appl Phys Express, 10, 031002(2017).

    [115] K B Nam, M L Nakarmi, J Li et al. Mg acceptor level in AlN probed by deep ultraviolet photoluminescence. Appl Phys Lett, 83, 878(2003).

    [116] C G Van de Walle, C Stampfl, J Neugebauer. Theory of doping and defects in III–V nitrides. J Cryst Growth, 189/190, 505(1998).

    [117] T Kolbe, A Knauer, C Chua et al. Optical polarization characteristics of ultraviolet (In)(Al)GaN multiple quantum well light emitting diodes. Appl Phys Lett, 97, 171105(2010).

    [118] P Cantu, S Keller, U K Mishra et al. Metalorganic chemical vapor deposition of highly conductive Al0.65Ga0.35N films. Appl Phys Lett, 82, 3683(2003).

    [119] K B Nam, J Li, M L Nakarmi et al. Achieving highly conductive AlGaN alloys with high Al contents. Appl Phys Lett, 81, 1038(2002).

    [120] F Nippert, M Tollabi Mazraehno, M J Davies et al. Auger recombination in AlGaN quantum wells for UV light-emitting diodes. Appl Phys Lett, 113, 071107(2018).

    [121] E Kioupakis, P Rinke, K T Delaney et al. Indirect Auger recombination as a cause of efficiency droop in nitride light-emitting diodes. Appl Phys Lett, 98, 161107(2011).

    [122] M Zhang, P Bhattacharya, J Singh et al. Direct measurement of auger recombination in In0.1Ga0.9N/GaN quantum wells and its impact on the efficiency of In0.1Ga0.9N/GaN multiple quantum well light emitting diodes. Appl Phys Lett, 95, 201108(2009).

    [123] Y C Shen, G O Mueller, S Watanabe et al. Auger recombination in InGaN measured by photoluminescence. Appl Phys Lett, 91, 141101(2007).

    [124] J Yun, J I Shim, H Hirayama. Analysis of efficiency droop in 280-nm AlGaN multiple-quantum-well light-emitting diodes based on carrier rate equation. Appl Phys Express, 8, 022104(2015).

    [125] C E Dreyer, A Alkauskas, J L Lyons et al. Gallium vacancy complexes as a cause of Shockley-Read-Hall recombination in III-nitride light emitters. Appl Phys Lett, 108, 141101(2016).

    [126] S Y Karpov, Y N Makarov. Dislocation effect on light emission efficiency in gallium nitride. Appl Phys Lett, 81, 4721(2002).

    [127] Y Nagasawa, A Hirano. A review of AlGaN-based deep-ultraviolet light-emitting diodes on sapphire. Appl Sci, 8, 1264(2018).

    [128] J Hakamata, Y Kawase, L Dong et al. Growth of high-quality AlN and AlGaN films on sputtered AlN/sapphire templates via high-temperature annealing. Phys Status Solidi B, 255, 1700506(2018).

    [129] S Nakamura, T Mukai, M Senoh et al. Thermal annealing effects on p-type Mg-doped GaN films. Jpn J Appl Phys, 31, L139(1992).

    [130] F Liang, J Yang, D G Zhao et al. Resistivity reduction of low temperature grown p-Al0.09Ga0.91N by suppressing the incorporation of carbon impurity. AIP Adv, 8, 085005(2018).

    [131] U Hömmerich, E E Nyein, D Lee et al. Photoluminescence studies of rare earth (Er, Eu, Tm) in situ doped GaN. Mater Sci Eng B, 105, 91(2003).

    [132] M T Chen, M P Lu, Y J Wu et al. Near UV LEDs made with in situ doped p-n homojunction ZnO nanowire arrays. Nano Lett, 10, 4387(2010).

    [133] J Derluyn, S Boeykens, K Cheng et al. Improvement of AlGaN/GaN high electron mobility transistor structures by in situ deposition of a Si3N4 surface layer. J Appl Phys, 98, 054501(2005).

    [134] H Fujiwara, K Sasaki. Amplified spontaneous emission from a surface-modified GaN film fabricated under pulsed intense UV laser irradiation. Appl Phys Lett, 113, 171606(2018).

    [135] T K Ng, J Yan. Special section guest editorial: Semiconductor UV photonics. J Nanophotonics, 12, 043501(2018).

    [136] Y Guo, J Yan, Y Zhang et al. Enhancing the light extraction of AlGaN-based ultraviolet light-emitting diodes in the nanoscale. J Nanophotonics, 12, 043510(2018).

    [137] M S Alias, M Tangi, J A Holguin-Lerma et al. Review of nanophotonics approaches using nanostructures and nanofabrication for III-nitrides ultraviolet-photonic devices. J Nanophotonics, 12, 043508(2018).

    [138] J W Min, D Priante, M Tangi et al. Unleashing the potential of molecular beam epitaxy grown AlGaN-based ultraviolet-spectrum nanowires devices. J Nanophotonics, 12, 043511(2018).

    [139] J Sun, C Lu, Y Song et al. Recent progress in the tailored growth of two-dimensional hexagonal boron nitride via chemical vapour deposition. Chem Soc Rev, 47, 4242(2018).

    [140] H X Jiang, J Y Lin. Hexagonal boron nitride for deep ultraviolet photonic devices. Semicond Sci Technol, 29, 084003(2014).

    [141] G Giovannetti, P A Khomyakov, G Brocks et al. Substrate-induced band gap in graphene on hexagonal boron nitride: Ab initio density functional calculations. Phys Rev B, 76, 073103(2007).

    [142] C H Kang, C Shen, M S M Saheed et al. Carbon nanotubegraphene composite film as transparent conductive electrode for GaN-based light-emitting diodes. Appl Phys Lett, 109, 081902(2016).

    [143] M Tangi, M K Shakfa, P Mishra et al. Anomalous photoluminescence thermal quenching of sandwiched single layer MoS2. Opt Mater Express, 7, 3697(2017).

    [144] K F Mak, K He, C Lee et al. Tightly bound trions in monolayer MoS2. Nat Mater, 12, 207(2013).

    [145] M J Tadjer, A D Koehler, J A Freitas et al. High resistivity halide vapor phase homoepitaxial β-Ga2O3 films Co-doped by silicon and nitrogen. Appl Phys Lett, 113, 192102(2018).

    [146] W Li, X Zhao, Y Zhi et al. Fabrication of cerium-doped β-Ga2O3 epitaxial thin films and deep ultraviolet photodetectors. Appl Opt, 57, 538(2018).

    [147] M Higashiwaki, G H Jessen. The dawn of gallium oxide microelectronics. Appl Phys Lett, 112, 060401(2018).

    [148] H Peelaers, J B Varley, J S Speck et al. Structural and electronic properties of Ga2O3–Al2O3 alloys. Appl Phys Lett, 112, 242101(2018).

    [149] S J Pearton, J Yang, I V P H Cary et al. A review of Ga2O3 materials, processing, and devices. Appl Phys Rev, 5, 011301(2018).

    [150] T H Yang, H Fu, H Chen et al. Temperature-dependent electrical properties of β-Ga2O3 Schottky barrier diodes on highly doped single-crystal substrates. J Semicond, 40, 012801(2019).

    [151] X Lu, L Zhou, L Chen et al. X-ray detection performance of vertical Schottky photodiodes based on a bulk β-Ga2O3 substrate grown by an EFG method. ECS J Solid State Sci Technol, 8, Q3046(2019).

    [152] Z Cheng, M Hanke, Z Galazka et al. Thermal expansion of single-crystalline β-Ga2O3 from RT to 1200 K studied by synchrotron-based high resolution x-ray diffraction. Appl Phys Lett, 113, 182102(2018).

    [153] A Katre, J Carrete, T Wang et al. Phonon transport unveils the prevalent point defects in GaN. Phys Rev Mater, 2, 050602(2018).

    [154] M Imura, Y Ota, R G Banal, M Liao et al. Effect of boron incorporation on structural and optical properties of AlN layers grown by metalorganic vapor phase epitaxy. Phys Status Solidi A, 215, 1800282(2018).

    [155] K Kojima, S Takashima, M Edo et al. Nitrogen vacancies as a common element of the green luminescence and nonradiative recombination centers in Mg-implanted GaN layers formed on a GaN substrate. Appl Phys Express, 10, 061002(2017).

    [156] J Kamimura, P Bogdanoff, M Ramsteiner et al. p-type doping of GaN nanowires characterized by photoelectrochemical measurements. Nano Lett, 17, 1529(2017).

    [157] M Pavesi, M Manfredi, G Salviati et al. Optical evidence of an electrothermal degradation of InGaN-based light-emitting diodes during electrical stress. Appl Phys Lett, 84, 3403(2004).

    [158] F A Reboredo, S T Pantelides. Novel defect complexes and their role in the p-type doping of GaN. Phys Rev Lett, 82, 1887(1999).

    [159] G Miceli, A Pasquarello. Self-compensation due to point defects in Mg-doped GaN. Phys Rev B, 93, 165207(2016).

    [160] Q Dai, X Zhang, Z Wu et al. Effects of Mg-doping on characteristics of semi-polar ( ) plane p-AlGaN films. Mater Lett, 209, 472(2017).

    [161] P Pampili, P J Parbrook. Doping of III-nitride materials. Mater Sci Semicond Process, 62, 180(2017).

    [162] Y Taniyasu, M Kasu, T Makimoto. An aluminium nitride light-emitting diode with a wavelength of 210 nanometres. Nature, 441, 325(2006).

    [163] Y Taniyasu, M Kasu, N Kobayashi. Intentional control of n-type conduction for Si-doped AlN and AlxGa1–xN (0.42 ≤ x < 1). Appl Phys Lett, 81, 1255(2002).

    [164] M L Nakarmi, K H Kim, K Zhu et al. Transport properties of highly conductive n-type Alrich AlxGa1–xN (x ≥ 0.7). Appl Phys Lett, 85, 3769(2004).

    [165] R Collazo, S Mita, J Xie et al. Progress on n-type doping of AlGaN alloys on AlN single crystal substrates for UV optoelectronic applications. Phys Status Solidi C, 8, 2031(2011).

    [166] F Mehnke, T Wernicke, H Pingel et al. Highly conductive n-AlxGa1–xN layers with aluminum mole fractions above 80%. Appl Phys Lett, 103, 212109(2013).

    [167] M L Nakarmi, N Nepal, C Ugolini et al. Correlation between optical and electrical properties of Mg-doped AlN epilayers. Appl Phys Lett, 89, 152120(2006).

    [168] F Mireles, S E Ulloa. Acceptor binding energies in GaN and AlN. Phys Rev B, 58, 3879(1998).

    [169] J Li, T N Oder, M L Nakarmi et al. Optical and electrical properties of Mg-doped p-type AlxGa1–xN. Appl Phys Lett, 80, 1210(2002).

    [170] A T M G Sarwar, B J May, J I Deitz et al. Tunnel junction enhanced nanowire ultraviolet light emitting diodes. Appl Phys Lett, 107, 101103(2015).

    [171] M Kaneko, S Ueta, M Horita et al. Deep-ultraviolet light emission from 4H-AlN/4H-GaN short-period superlattice grown on 4H-SiC( ). Appl Phys Lett, 112, 012106(2018).

    [172] S Liu, C Ye, X Cai et al. Performance enhancement of AlGaN deep-ultraviolet light-emitting diodes with varied superlattice barrier electron blocking layer. Appl Phys A, 122, 527(2016).

    [173] P Kozodoy, M Hansen, S P DenBaars et al. Enhanced Mg doping efficiency in Al0.2Ga0.8N/GaN superlattices. Appl Phys Lett, 74, 3681(1999).

    [174] H Sun, J Yin, E F Pecora et al. Deep-ultraviolet emitting AlGaN multiple quantum well graded-index separate-confinement heterostructures grown by MBE on SiC substrates. IEEE Photon J, 9, 2201109(2017).

    [175] H Sun, E F Pecora, J Woodward et al. Effect of indium in Al0.65Ga0.35N/Al0.8Ga0.2N MQWs for the development of deep-UV laser structures in the form of graded-index separate confinement heterostructure (GRINSCH). Phys Status Solidi A, 213, 1165(2016).

    [176] H Sun, J Woodward, J Yin et al. Development of AlGaN-based graded-index-separate-confinement-heterostructure deep UV emitters by molecular beam epitaxy. J Vac Sci Technol B, 31, 03C117(2013).

    [177] H Sun, T D Moustakas. UV emitters based on an AlGaN p-n junction in the form of graded-index separate confinement heterostructure. Appl Phys Express, 7, 012104(2013).

    [178] J Simon, V Protasenko, C Lian et al. Polarization-induced hole doping in wide-band-gap uniaxial semiconductor heterostructures. Science, 327, 60(2010).

    [179] C Liu, Y K Ooi, S M Islam et al. Physics and polarization characteristics of 298 nm AlN-delta-GaN quantum well ultraviolet light-emitting diodes. Appl Phys Lett, 110, 071103(2017).

    [180] M L Nakarmi, K H Kim, J Li et al. Enhanced p-type conduction in GaN and AlGaN by Mg-δ-doping. Appl Phys Lett, 82, 3041(2003).

    [181] B E Gaddy, Z Bryan, I Bryan et al. The role of the carbon-silicon complex in eliminating deep ultraviolet absorption in AlN. Appl Phys Lett, 104, 202106(2014).

    [182] H Wu, R Zheng, W Liu et al. C and Si codoping method for p-type AlN. J Appl Phys, 108, 053715(2010).

    [183] N H Tran, B H Le, S Zhao et al. On the mechanism of highly efficient p-type conduction of Mg-doped ultra-widebandgap AlN nanostructures. Appl Phys Lett, 110, 032102(2017).

    [184] A T Connie, S Zhao, S M Sadaf et al. Optical and electrical properties of Mg-doped AlN nanowires grown by molecular beam epitaxy. Appl Phys Lett, 106, 213105(2015).

    [185] A Sedhain, T M Al Tahtamouni, J Li et al. Beryllium acceptor binding energy in AlN. Appl Phys Lett, 93, 141104(2008).

    [186] R Wu, L Shen, M Yang et al. Possible efficient p-type doping of AlN using Be: An ab initio study. Appl Phys Lett, 91, 152110(2007).

    [187] Á Szabó, N T Son, E Janzén et al. Group-II acceptors in wurtzite AlN: A screened hybrid density functional study. Appl Phys Lett, 96, 192110(2010).

    [188] V A Soltamov, M K Rabchinskii, B V Yavkin et al. Properties of AlN single crystals doped with Beryllium via high temperature diffusion. Appl Phys Lett, 113, 082104(2018).

    [189] Q Wang, C R Bowen, R Lewis et al. Hexagonal boron nitride nanosheets doped pyroelectric ceramic composite for high-performance thermal energy harvesting. Nano Energy, 60, 144(2019).

    [190] R. Puchta. A brighter beryllium. Nat Chem, 3, 416(2011).

    [191] J H Park, D Y Kim, E F Schubert et al. Fundamental limitations of wide-bandgap semiconductors for light-emitting diodes. ACS Energy Lett, 3, 655(2018).

    [192] S Kamiyama, M Iwaya, N Hayashi et al. Low-temperature-deposited AlGaN interlayer for improvement of AlGaN/GaN heterostructure. J Cryst Growth, 223, 83(2001).

    [193] S M Islam, K Lee, J Verma et al. MBE-grown 232–270 nm deep-UV LEDs using monolayer thin binary GaN/AlN quantum heterostructures. Appl Phys Lett, 110, 041108(2017).

    [194] L Y Wang, W D Song, W X Hu et al. Efficiency enhancement of ultraviolet light-emitting diodes with segmentally graded p-type AlGaN layer. Chin Phys B, 28, 018503(2019).

    [195] P Strak, P Kempisty, M Ptasinska et al. Principal physical properties of GaN/AlN multiquantum well systems determined by density functional theory calculations. J Appl Phys, 113, 193706(2013).

    [196] H Long, S Wang, J Dai et al. Internal strain induced significant enhancement of deep ultraviolet light extraction efficiency for AlGaN multiple quantum wells grown by MOCVD. Opt Express, 26, 680(2018).

    [197] C Reich, M Guttmann, M Feneberg et al. Strongly transverse-electric-polarized emission from deep ultraviolet AlGaN quantum well light emitting diodes. Appl Phys Lett, 107, 142101(2015).

    [198] J Verma, S M Islam, V Protasenko et al. Tunnel-injection quantum dot deep-ultraviolet light-emitting diodes with polarization-induced doping in III-nitride heterostructures. Appl Phys Lett, 104, 021105(2014).

    [199] J Verma, P K Kandaswamy, V Protasenko et al. Tunnel-injection GaN quantum dot ultraviolet light-emitting diodes. Appl Phys Lett, 102, 041103(2013).

    [200] Y Taniyasu, M Kasu. Polarization property of deepultraviolet light emission from C-plane AlN/GaN short-period superlattices. Appl Phys Lett, 99, 251112(2011).

    [201] S Zhao, Z Mi. Al(Ga)N nanowire deep ultraviolet optoelectronics. Semicond Semimet, 96, 167(2017).

    [202] M Beeler, P Hille, J Schormann et al. Intraband absorption in self-assembled Ge-doped GaN/AlN nanowire heterostructures. Nano Lett, 14, 1665(2014).

    [203] M Tchernycheva, L Nevou, L Doyennette et al. Systematic experimental and theoretical investigation of intersubband absorption in GaN/AlN quantum wells. Phys Rev B, 73, 125347(2006).

    [204] D Cociorva, W G Aulbur, J W Wilkins. Quasiparticle calculations of band offsets at AlN–GaN interfaces. Solid State Commun, 124, 63(2002).

    [205] N Binggeli, P Ferrara, A Baldereschi. Band-offset trends in nitride heterojunctions. Phys Rev B, 63, 245306(2001).

    [206] K Kamiya, Y Ebihara, M Kasu. Efficient structure for deep-ultraviolet light-emitting diodes with high emission efficiency: A first-principles study of AlN/GaN superlattice. Jpn J Appl Phys, 51, 02BJ11(2012).

    [207] D Bayerl, S M Islam, C M Jones et al. Deep ultraviolet emission from ultra-thin GaN/AlN heterostructures. Appl Phys Lett, 109, 241102(2016).

    [208] S M Islam, V Protasenko, S Rouvimov et al. Sub-230 nm deep-UV emission from GaN quantum disks in AlN grown by a modified Stranski-Krastanov mode. Jpn J Appl Phys, 55, 05FF06(2016).

    [209] D Bayerl, s E Kioupakis. Visible-wavelength polarized-light emission with small-diameter InN nanowires. Nano Lett, 14, 3709(2014).

    [210] A L Efros, J B Delehanty, A L Huston et al. Evaluating the potential of using quantum dots for monitoring electrical signals in neurons. Nat Nanotechnol, 13, 278(2018).

    [211] A S Sharma, r S Dhar. Dependence of strain distribution on In content in InGaN/GaN quantum wires and spherical quantum dots. J Electron Mater, 47, 1239(2018).

    [212] J Renard, P K Kandaswamy, E Monroy et al. Suppression of nonradiative processes in long-lived polar GaN/AlN quantum dots. Appl Phys Lett, 95, 131903(2009).

    [213] B Janjua, H Sun, C Zhao et al. Self-planarized quantum-disks-in-nanowires ultraviolet-B emitters utilizing pendeo-epitaxy. Nanoscale, 9, 7805(2017).

    [214] C Zhao, T K Ng, N Wei et al. Facile formation of high-quality InGaN/GaN quantum-disks-in-nanowires on bulk-metal substrates for high-power light-emitters. Nano Lett, 16, 1056(2016).

    [215] K Hestroffer, C Leclere, V Cantelli et al. In situ study of self-assembled GaN nanowires nucleation on Si(111) by plasma-assisted molecular beam epitaxy. Appl Phys Lett, 100, 212107(2012).

    [216] T Schumann, T Gotschke, F Limbach et al. Selective-area catalyst-free MBE growth of GaN nanowires using a patterned oxide layer. Nanotechnology, 22, 095603(2011).

    [217] L Ravi, K Boopathi, P Panigrahi et al. Growth of gallium nitride nanowires on sapphire and silicon by chemical vapor deposition for water splitting applications. Appl Surf Sci, 449, 213(2018).

    [218]

    [219] M Heilmann, A M Munshi, G Sarau et al. Vertically oriented growth of GaN nanorods on Si using graphene as an atomically thin buffer layer. Nano Lett, 16, 3524(2016).

    [220] Z Zhong, F Qian, D Wang et al. Synthesis of p-type gallium nitride nanowires for electronic and photonic nanodevices. Nano Lett, 3, 343(2003).

    [221] R Wang, H P T Nguyen, A T Connie et al. Color-tunable, phosphor-free InGaN nanowire light-emitting diode arrays monolithically integrated on silicon. Opt Express, 22, A1768(2014).

    [222] P Parkinson, H J Joyce, Q Gao et al. Carrier lifetime and mobility enhancement in nearly defect-free core- shell nanowires measured using time-resolved terahertz spectroscopy. Nano Lett, 9, 3349(2009).

    [223] D Tham, C Y Nam, J E Fischer. Defects in GaN nanowires. Adv Funct Mater, 16, 1197(2006).

    [224] B H Le, S Zhao, X Liu et al. Controlled coalescence of AlGaN nanowire arrays: An architecture for nearly dislocation-free planar ultraviolet photonic device applications. Adv Mater, 28, 8446(2016).

    [225] Y L Chang, J Wang, F Li et al. High efficiency green, yellow, and amber emission from InGaN/GaN dot-in-a-wire heterostructures on Si(111). Appl Phys Lett, 96, 013106(2010).

    [226] R Yan, D Gargas, P Yang. Nanowire photonics. Nat Photonics, 3, 569(2009).

    [227] F Qian, S Gradecak, Y Li et al. Core/multishell nanowire heterostructures as multicolor, high-efficiency light-emitting diodes. Nano Lett, 5, 2287(2005).

    [228] F Qian, Y Li, S Gradecak et al. Gallium nitride-based nanowire radial heterostructures for nanophotonics. Nano Lett, 4, 1975(2004).

    [229] D Priante, M Tangi, J W Min et al. Enhanced electro-optic performance of surface-treated nanowires: origin and mechanism of nanoscale current injection for reliable ultraviolet light-emitting diodes. Opt Mater Express, 9, 203(2019).

    [230] J Almutlaq, J Yin, O F Mohammed et al. The benefit and challenges of zero-dimensional perovskites. J Phys Chem Lett, 9, 4131(2018).

    [231] N T Hung, E H Hasdeo, A R Nugraha et al. Quantum effects in the thermoelectric power factor of low-dimensional semiconductors. Phys Rev Lett, 117, 036602(2016).

    [232] H Li, L Geelhaar, H Riechert et al. Computing equilibrium shapes of wurtzite crystals: The example of GaN. Phys Rev Lett, 115, 085503(2015).

    [233] F Schuster, A Winnerl, S Weiszer et al. Doped GaN nanowires on diamond: Structural properties and charge carrier distribution. J Appl Phys, 117, 044307(2015).

    [234] H P T Nguyen, M Djavid, K Cui et al. Temperature-dependent nonradiative recombination processes in GaN-based nanowire white-light-emitting diodes on silicon. Nanotechnology, 23, 194012(2012).

    [235] T D Moustakas. Ultraviolet optoelectronic devices based on AlGaN alloys grown by molecular beam epitaxy. MRS Commun, 6, 247(2016).

    [236] K Liu, H Sun, F AlQatari et al. Wurtzite BAlN and BGaN alloys for heterointerface polarization engineering. Appl Phys Lett, 111, 222106(2017).

    [237] X Li, S Wang, H Liu et al. 100-nm thick single-phase wurtzite BAlN films with boron contents over 10%. Phys Status Solidi B, 254, 1600699(2017).

    [238] G Orsal, N Maloufi, S Gautier et al. Effect of boron incorporation on growth behavior of BGaN/GaN by MOVPE. J Cryst Growth, 310, 5058(2008).

    [239] L Escalanti, G L W Hart. Boron alloying in GaN. Appl Phys Lett, 84, 705(2004).

    [240] L K Teles, J Furthmüller, L M R Scolfaro et al. Phase separation and gap bowing in zinc-blende InGaN, InAlN, BGaN, and BAlN alloy layers. Physica E, 13, 1086(2002).

    [241] L K Teles, L M R Scolfaro, J R Leite et al. Spinodal decomposition in BxGa1–xN and BxAl1–xN alloys. Appl Phys Lett, 80, 1177(2002).

    [242] J H Edgar, D T Smith, C R Jr Eddy et al. c-Boron-aluminum nitride alloys prepared by ion-beam assisted deposition. Thin Solid Films, 298, 33(1997).

    [243] H X Jiang, J Y Lin. Hexagonal boron nitride epilayers: Growth, optical properties and device applications. ECS J Solid State Sci Technol, 6, Q3012(2017).

    [244] T Das, S Chakrabarty, Y Kawazoe et al. Tuning the electronic and magnetic properties of graphene/h-BN hetero nanoribbon: A first-principles investigation. AIP Adv, 8, 065111(2018).

    [245] Y Kubota, K Watanabe, O Tsuda et al. Deep ultraviolet light-emitting hexagonal boron nitride synthesized at atmospheric pressure. Science, 317, 932(2007).

    [246] X Blase, A Rubio, S G Louie et al. Quasiparticle band structure of bulk hexagonal boron nitride and related systems. Phys Rev B, 51, 6868(1995).

    [247] A Rubio, J L Corkill, M L Cohen. Theory of graphitic boron nitride nanotubes. Phys Rev B, 49, 5081(1994).

    [248] B Arnaud, S Lebegue, P Rabiller et al. Huge excitonic effects in layered hexagonal boron nitride. Phys Rev Lett, 96, 026402(2006).

    [249] X Hong, D Wang, D D L Chung. Boron nitride nanotube mat as a low-k dielectric material with relative dielectric constant ranging from 1.0 to 1.1. J Electron Mater, 45, 453(2016).

    [250] J Yin, J Li, Y Hang et al. Boron nitride nanostructures: Fabrication, functionalization and applications. Small, 12, 2942(2016).

    [251] K Shehzad, Y Xu, C Gao et al. Three-dimensional macro-structures of two-dimensional nanomaterials. Chem Soc Rev, 45, 5541(2016).

    [252] T Terao, C Zhi, Y Bando et al. Alignment of boron nitride nanotubes in polymeric composite films for thermal conductivity improvement. J Phys Chem C, 114, 4340(2010).

    [253] C Zhi, Y Bando, C Tang et al. Boron nitride nanotubes. Mater Sci Eng R, 70, 92(2010).

    [254] H Henck, D Pierucci, G Fugallo et al. Direct observation of the band structure in bulk hexagonal boron nitride. Phys Rev B, 95, 085410(2017).

    [255] S J Grenadier, A Maity, J Li et al. Origin and roles of oxygen impurities in hexagonal boron nitride epilayers. Appl Phys Lett, 112, 162103(2018).

    [256] X Z Du, J Li, J Y Lin et al. The origins of near band-edge transitions in hexagonal boron nitride epilayers. Appl Phys Lett, 108, 052106(2016).

    [257] C Attaccalite, M Bockstedte, A Marini et al. Coupling of excitons and defect states in boron-nitride nanostructures. Phys Rev B, 83, 144115(2011).

    [258] L Schué, L Sponza, A Plaud et al. Bright luminescence from indirect and strongly bound excitons in h-BN. Phys Rev Lett, 122, 067401(2019).

    [259] K Watanabe, T Taniguchi. Jahn-Teller effect on exciton states in hexagonal boron nitride single crystal. Phys Rev B, 79, 193104(2009).

    [260] K Watanabe, T Taniguchi, H Kanda. Direct-bandgap properties and evidence for ultraviolet lasing of hexagonal boron nitride single crystal. Nat Mater, 3, 404(2004).

    [261] V L Solozhenko, A G Lazarenko, J P Petitet et al. Bandgap energy of graphite-like hexagonal boron nitride. J Phys Chem Solids, 62, 1331(2001).

    [262] J A Carlisle, E L Shirley, L J Terminello et al. Band-structure and core-hole effects in resonant inelastic softx-ray scattering: Experiment and theory. Phys Rev B, 59, 7433(1999).

    [263] J J Jia, T A Callcott, E L Shirley et al. Resonant inelastic X-ray scattering in hexagonal boron nitride observed by soft-X-ray fluorescence spectroscopy. Phys Rev Lett, 76, 4054(1996).

    [264] C A Taylor, S W Brown, V Subramaniam et al. Observation of near-band-gap luminescence from boron nitride films. Appl Phys Lett, 65, 1251(1994).

    [265] V V Lopatin, F V Konusov. Energetic states in the boron nitride band gap. J Phys Chem Solids, 53, 847(1992).

    [266] C Tarrio, S E Schnatterly. Interband transitions, plasmons, and dispersion in hexagonal boron nitride. Phys Rev B, 40, 7852(1989).

    [267] D M Hoffman, G L Doll, P C Eklund. Optical properties of pyrolytic boron nitride in the energy range 0.05–10 eV. Phys Rev B, 30, 6051(1984).

    [268] T Sugino, K Tanioka, S Kawasaki et al. Characterization and field emission of sulfur-doped boron nitride synthesized by plasma-assisted chemical vapor deposition. Jpn J Appl Phys, 36, L463(1997).

    [269] L G Carpenter, P J Kirby. The electrical resistivity of boron nitride over the temperature range 700 °C to 1400 °C. J Phys D, 15, 1143(1982).

    [270] B M Davies, F Bassani, F C Brown et al. Core excitons at the boron K edge in hexagonal BN. Phys Rev B, 24, 3537(1981).

    [271] E Tegeler, N Kosuch, G Wiech et al. On the electronic structure of hexagonal boron nitride. Phys Status Solidi B, 91, 223(1979).

    [272] A Zunger, A Katzir, A Halperin. Optical properties of hexagonal boron nitride. Phys Rev B, 13, 5560(1976).

    [273] F C Brown, R Z Bachrach, M Skibowski. Effect of X-ray polarization at the boron K edge in hexagonal BN. Phys Rev B, 13, 2633(1976).

    [274] J Zupan, D Kolar. Optical properties of graphite and boron nitride. J Phys C Solid State Phys, 5, 3097(1972).

    [275] G Cassabois, P Valvin, B Gil. Hexagonal boron nitride is an indirect bandgap semiconductor. Nat Photonics, 10, 262(2016).

    [276] D A Laleyan, S Zhao, S Y Woo et al. AlN/h-BN heterostructures for Mg dopant-free deep ultraviolet photonics. Nano Lett, 17, 3738(2017).

    [277] F Cadiz, E Courtade, C Robert et al. Excitonic linewidth approaching the homogeneous limit in MoS2-based van der Waals heterostructures. Phys Rev X, 7, 021026(2017).

    [278] L Museur, G Brasse, A Pierret et al. Exciton optical transitions in a hexagonal boron nitride single crystal. Phys Status Solidi RRL, 5, 214(2011).

    [279] D Pierucci, J Zribi, H Henck et al. Van der Waals epitaxy of two-dimensional single-layer h-BN on graphite by molecular beam epitaxy: Electronic properties and band structure. Appl Phys Lett, 112, 253102(2018).

    [280]

    [281] K Kaneko, S Fujita, T Hitora. A power device material of corundum-structured α-Ga2O3 fabricated by MIST EPITAXY® technique. Jpn J Appl Phys, 57, 02CB18(2018).

    [282] S Fujita, M Oda, K Kaneko et al. Evolution of corundum-structured III-oxide semiconductors: Growth, properties, and devices. Jpn J Appl Phys, 55, 1202A3(2016).

    [283] D Shinohara, S Fujita. Heteroepitaxy of corundum-structured α-Ga2O3 thin films on α-Al2O3 substrates by ultrasonic mist chemical vapor deposition. Jpn J Appl Phys, 47, 7311(2008).

    [284] M Marezio, J P Remeika. Bond lengths in the α-Ga2O3 structure and the high-pressure phase of Ga2–xFexO3. J Chem Phys, 46, 1862(1967).

    [285] M Leszczynski, H Teisseyre, T Suski et al. Lattice parameters of gallium nitride. Appl Phys Lett, 69, 73(1996).

    [286] J Zhao, X Zhang, J He et al. High internal quantum efficiency of nonpolar a-plane AlGaN-based multiple quantum wells grown on r-plane sapphire substrate. ACS Photonics, 5, 1903(2018).

    [287] M Tangi, P Mishra, B Janjua et al. Role of quantumconfined stark effect on bias dependent photoluminescence of N-polar GaN/InGaN multi-quantum disk amber light emitting diodes. J Appl Phys, 123, 105702(2018).

    [288] T D Moustakas, R Paiella. Optoelectronic device physics and technology of nitride semiconductors from the UV to the terahertz. Rep Prog Phys, 80, 106501(2017).

    [289] I Bartoš, O Romanyuk, T Paskova et al. Electron band bending and surface sensitivity: X-ray photoelectron spectroscopy of polar GaN surfaces. Surf Sci, 664, 241(2017).

    [290] H W Jang, J H Lee, J L Lee. Characterization of band bendings on Ga-face and N-face GaN films grown by metalorganic chemical-vapor deposition. Appl Phys Lett, 80, 3955(2002).

    [291]

    [292] I Yonenaga, Y Ohkubo, M Deura et al. Elastic properties of indium nitrides grown on sapphire substrates determined by nano-indentation: In comparison with other nitrides. AIP Adv, 5, 077131(2015).

    [293] W M Yim, R J Paff. Thermal expansion of AlN, sapphire, and silicon. J Appl Phys, 45, 1456(1974).

    [294] H P Maruska, J J Tietjen. The preparation and properties of vapor-deposited single-crystal-line GaN. Appl Phys Lett, 15, 327(1969).

    [295] A Wright. Elastic properties of zinc-blende and wurtzite AlN, GaN, and InN. J Appl Phys, 82, 2833(1997).

    [296] K Kim, W R L Lambrecht, B Segall. Elastic constants and related properties of tetrahedrally bonded BN, AlN, GaN, and InN. Phys Rev B, 53, 16310(1996).

    [297] A Polian, M Grimsditch, I Grzegory. Elastic constants of gallium nitride. J Appl Phys, 79, 3343(1996).

    [298] R Thokala, J Chaudhuri. Calculated elastic constants of wide band gap semiconductor thin films with a hexagonal crystal structure for stress problems. Thin Solid Films, 266, 189(1995).

    [299] L E McNeil, M Grimsditch, R H French. Vibrational spectroscopy of aluminum nitride. J Am Ceram Soc, 76, 1132(1993).

    [300] I F Chetverikova, M V Chukichev, L N Rastorguev. X-ray phase analysis and elastic properties of gallium nitride. Inorg Mater, 22, 53(1986).

    [301] R Rounds, B Sarkar, T Sochacki et al. Thermal conductivity of GaN single crystals: Influence of impurities incorporated in different growth processes. J Appl Phys, 124, 105106(2018).

    [302] E Ziade, J Yang, G Brummer et al. Thickness dependent thermal conductivity of gallium nitride. Appl Phys Lett, 110, 031903(2017).

    [303] C Mion, J F Muth, E A Preble et al. Accurate dependence of gallium nitride thermal conductivity on dislocation density. Appl Phys Lett, 89, 092123(2006).

    [304] K Harafuji, T Tsuchiya, K Kawamura. Molecular dynamics simulation for evaluating melting point of wurtzite-type GaN crystal. J Appl Phys, 96, 2501(2004).

    [305]

    [306] H Morkoc, S Strite, G Gao et al. Large-band-gap SiC, III-V nitride, and II-VI ZnSe-based semiconductor device technologies. J Appl Phys, 76, 1363(1994).

    [307]

    [308] I Grzegory, S Krukowski, J Jun et al. Stability of indium nitride at N2 pressure up to 20 kbar. AIP Conf Proc, 309, 565(1994).

    [309] G A Slack, R A Tanzilli, R O Pohl et al. The intrinsic thermal conductivity of AIN. J Phys Chem Solids, 48, 641(1987).

    [310]

    [311] G A Slack, T F McNelly. AlN single crystals. J Cryst Growth, 42, 560(1977).

    [312] G A Slack, T F McNelly. Growth of high purity AlN crystals. J Cryst Growth, 34, 263(1976).

    [313] G A Slack, S F Bartram. Thermal expansion of some diamondlike crystals. J Appl Phys, 46, 89(1975).

    [314]

    [315] V A Tyagai, A M Evstigneev, A N Krasiko et al. Optical properties of indium nitride films. Sov Phys Semicond, 11, 1257(1977).

    [316] A S Jr Barker, M Ilegems. Infrared lattice vibrations and free-electron dispersion in GaN. Phys Rev B, 7, 743(1973).

    [317] J M Wagner, F Bechstedt. Properties of strained wurtzite GaN and AlN: Ab initio studies. Phys Rev B, 66, 115202(2002).

    [318] S Krukowski, A Witek, J Adamczyk et al. Thermal properties of indium nitride. J Phys Chem Solids, 59, 289(1998).

    [319]

    [320] S T You, I Lo, H J Shih et al. Strain of m-plane GaN epitaxial layer grown on β-LiGaO2(100) by plasma-assisted molecular beam epitaxy. AIP Adv, 8, 075116(2018).

    [321] M J Davies, P Dawson, F C P Massabuau et al. The effects of varying threading dislocation density on the optical properties of InGaN/GaN quantum wells. Phys Status Solidi C, 11, 750(2014).

    [322] J P Zhang, H M Wang, M E Gaevski et al. Crack-free thick AlGaN grown on sapphire using AlN/AlGaN superlattices for strain management. Appl Phys Lett, 80, 3542(2002).

    [323] P Dong, J Yan, J Wang et al. 282-nm AlGaN-based deep ultraviolet light-emitting diodes with improved performance on nano-patterned sapphire substrates. Appl Phys Lett, 102, 241113(2013).

    [324] Z Bryan, I Bryan, J Xie et al. High internal quantum efficiency in AlGaN multiple quantum wells grown on bulk AlN substrates. Appl Phys Lett, 106, 142107(2015).

    [325] J R Grandusky, J A Smart, M C Mendrick et al. Pseudomorphic growth of thick n-type AlxGa1–xN layers on low-defect-density bulk AlN substrates for UV LED applications. J Cryst Growth, 311, 2864(2009).

    [326] D M Graham, A Soltani-Vala, P Dawson et al. Optical and microstructural studies of InGaN/GaN single-quantum-well structures. J Appl Phys, 97, 103508(2005).

    [327] S Nakamura, M Senoh, T Mukai. High-power InGaN/GaN double-heterostructure violet light emitting diodes. Appl Phys Lett, 62, 2390(1993).

    [328] S Usami, Y Ando, A Tanaka et al. Correlation between dislocations and leakage current of p–n diodes on a free-standing GaN substrate. Appl Phys Lett, 112, 182106(2018).

    [329] M S Ferdous, X Wang, M N Fairchild et al. Effect of threading defects on InGaN/GaN multiple quantum well light emitting diodes. Appl Phys Lett, 91, 231107(2007).

    [330] S Kamiyama, M Iwaya, S Takanami et al. UV light-emitting diode fabricated on hetero-ELO-grown Al0.22Ga0.78N with low dislocation density. Phys Status Solidi A, 192, 296(2002).

    [331] S Nakamura. The roles of structural imperfections in InGaNbased blue light-emitting diodes and laser diodes. Science, 281, 956(1998).

    [332] F C Massabuau, S L Rhode, M K Horton et al. Dislocations in AlGaN: Core structure, atom segregation, and optical properties. Nano Lett, 17, 4846(2017).

    [333] D Holec, P M F J Costa, M J Kappers et al. Critical thickness calculations for InGaN/GaN. J Cryst Growth, 303, 314(2007).

    [334] D Holec, Y Zhang, D V S Rao et al. Equilibrium critical thickness for misfit dislocations in III-nitrides. J Appl Phys, 104, 123514(2008).

    [335] X Yang, S Nitta, K Nagamatsu et al. Growth of hexagonal boron nitride on sapphire substrate by pulsed-mode metalorganic vapor phase epitaxy. J Cryst Growth, 482, 1(2018).

    [336] J R Creighton, M E Coltrin, J J Figiel. Measurement and thermal modeling of sapphire substrate temperature at III–nitride MOVPE conditions. J Cryst Growth, 464, 132(2017).

    [337] H Hirayama, S Fujikawa, N Noguchi et al. 222–282 nm AlGaN and InAlGaN-based deep-UV LEDs fabricated on high-quality AlN on sapphire. Phys Status Solidi A, 206, 1176(2009).

    [338] T W Jr Weeks, M D Bremser, K S Ailey et al. GaN thin films deposited via organometallic vapor phase epitaxy on α(6H)-SiC(0001) using high-temperature monocrystalline AlN buffer layers. Appl Phys Lett, 67, 401(1995).

    [339] I Akasaki, H Amano, Y Koide et al. Effects of AlN buffer layer on crystallographic structure and on electrical and optical properties of GaN and Ga1–xAlxN (0 < x ≤ 0.4) films grown on sapphire substrate by MOVPE. J Cryst Growth, 98, 209(1989).

    [340] S Matta, J Brault, T H Ngo et al. Photoluminescence properties of (Al,Ga)N nanostructures grown on Al0.5Ga0.5N (0001). Superlattices Microstruct, 114, 161(2018).

    [341] H Hirayama, S Fujikawa, J Norimatsu et al. Fabrication of a low threading dislocation density ELO-AlN template for application to deep-UV LEDs. Phys Status Solidi C, 6, S356(2009).

    [342] Q Xu, B Liu, S Zhang et al. Structural and optical properties of AlxGa1–xN (0.33 ≤ x ≤ 0.79) layers on high-temperature AlN interlayer grown by metal organic chemical vapor deposition. Superlattices Microstruct, 101, 144(2017).

    [343] M A Khan, M Shatalov, H P Maruska et al. III-nitride UV devices. Jpn J Appl Phys, 44, 7191(2005).

    [344] S Keller, S P DenBaars. Metalorganic chemical vapor deposition of group III nitrides — a discussion of critical issues. J Cryst Growth, 248, 479(2003).

    [345] X H Wu, P Fini, E J Tarsa et al. Dislocation generation in GaN heteroepitaxy. J Cryst Growth, 189, 231(1998).

    [346] M Imura, K Nakano, N Fujimoto et al. Dislocations in AlN epilayers grown on sapphire substrate by high-temperature metal-organic vapor phase epitaxy. Jpn J Appl Phys, 46, 1458(2007).

    [347] V Narayanan, K Lorenz, W Kim et al. Origins of threading dislocations in GaN epitaxial layers grown on sapphire by metalorganic chemical vapor deposition. Appl Phys Lett, 78, 1544(2001).

    [348] H M Wang, J P Zhang, C Q Chen et al. AlN/AlGaN superlattices as dislocation filter for low-threading-dislocation thick AlGaN layers on sapphire. Appl Phys Lett, 81, 604(2002).

    [349] H Jiang, T Egawa, M Hao et al. Reduction of threading dislocations in AlGaN layers grown on AlN/sapphire templates using high-temperature GaN interlayer. Appl Phys Lett, 87, 241911(2005).

    [350] J Tersoff. Dislocations and strain relief in compositionally graded layers. Appl Phys Lett, 62, 693(1993).

    [351] S V Ivanov, D V Nechaev, A A Sitnikova et al. Plasma-assisted molecular beam epitaxy of Al(Ga)N layers and quantum well structures for optically pumped mid-UV lasers on c-Al2O3. Semicond Sci Technol, 29, 084008(2014).

    [352] J Cho, E F Schubert, J K Kim. Efficiency droop in light-emitting diodes: Challenges and countermeasures. Laser Photonics Rev, 7, 408(2013).

    [353] B Janjua, H Sun, C Zhao et al. Droop-free AlxGa1–xN/AlyGa1–yN quantum-disks-in-nanowires ultraviolet LED emitting at 337 nm on metal/silicon substrates. Opt Express, 25, 1381(2017).

    [354] T Kim, T Y Seong, O Kwon. Investigating the origin of efficiency droop by profiling the voltage across the multi-quantum well of an operating light-emitting diode. Appl Phys Lett, 108, 231101(2016).

    [355] E Jung, G Hwang, J Chung et al. Investigating the origin of efficiency droop by profiling the temperature across the multi-quantum well of an operating light-emitting diode. Appl Phys Lett, 106, 041114(2015).

    [356] G Verzellesi, D Saguatti, M Meneghini et al. Efficiency droop in InGaN/GaN blue light-emitting diodes: Physical mechanisms and remedies. J Appl Phys, 114, 071101(2013).

    [357] M H Kim, M F Schubert, Q Dai et al. Origin of efficiency droop in GaN-based light-emitting diodes. Appl Phys Lett, 91, 183507(2007).

    [358] A A Efremov, N Bochkareva, R I Gorbunov et al. Effect of the joule heating on the quantum efficiency and choice of thermal conditions for high-power blue InGaN/GaN LEDs. Semiconductors, 40, 605(2006).

    [359] Y Yang, X A Cao, C Yan. Investigation of the nonthermal mechanism of efficiency rolloff in InGaN light-emitting diodes. IEEE Trans Electron Devices, 55, 1771(2008).

    [360] T Mukai, M Yamada, S Nakamura. Characteristics of InGaN-based UV/blue/green/amber/red light-emitting diodes. Jpn J Appl Phys, 38, 3976(1999).

    [361] X Meng, L Wang, Z Hao et al. Study on efficiency droop in InGaN/GaN light-emitting diodes based on differential carrier lifetime analysis. Appl Phys Lett, 108, 013501(2016).

    [362] M F Schubert, J Xu, J K Kim et al. Polarization-matched GaInN/AlGaInN multi-quantum-well light-emitting diodes with reduced efficiency droop. Appl Phys Lett, 93, 041102(2008).

    [363] D S Meyaard, G B Lin, J Cho et al. Identifying the cause of the efficiency droop in GaInN light-emitting diodes by correlating the onset of high injection with the onset of the efficiency droop. Appl Phys Lett, 102, 251114(2013).

    [364] N I Bochkareva, Y T Rebane, Y G Shreter. Efficiency droop in GaN LEDs at high current densities: Tunneling leakage currents and incomplete lateral carrier localization in InGaN/GaN quantum wells. Semiconductors, 48, 1079(2014).

    [365] I V Rozhansky, D A Zakheim. Analysis of the causes of the decrease in the electroluminescence efficiency of AlGaInN light-emitting-diode heterostructures at high pumping density. Semiconductors, 40, 839(2006).

    [366] J Piprek. Efficiency droop in nitride-based light-emitting diodes. Phys Status Solidi A, 207, 2217(2010).

    [367] X Hai, R T Rashid, S M Sadaf et al. Effect of low hole mobility on the efficiency droop of AlGaN nanowire deep ultraviolet light emitting diodes. Appl Phys Lett, 114, 101104(2019).

    [368] T Frost, S Jahangir, E Stark et al. Monolithic electrically injected nanowire array edge-emitting laser on (001) silicon. Nano Lett, 14, 4535(2014).

    [369] J Iveland, L Martinelli, J Peretti et al. Direct measurement of Auger electrons emitted from a semiconductor light-emitting diode under electrical injection: Identification of the dominant mechanism for efficiency droop. Phys Rev Lett, 110, 177406(2013).

    [370] L Wang, J Jin, C Mi et al. A review on experimental measurements for understanding efficiency droop in InGaN-based light-emitting diodes. Materials, 10, 1233(2017).

    [371] H Yoshida, M Kuwabara, Y Yamashita et al. Radiative and nonradiative recombination in an ultraviolet GaN/AlGaN multiple-quantum-well laser diode. Appl Phys Lett, 96, 211122(2010).

    [372]

    [373] J Hader, J V Moloney, B Pasenow et al. On the importance of radiative and Auger losses in GaN-based quantum wells. Appl Phys Lett, 92, 261103(2008).

    [374] K T Delaney, P Rinke, C G Van de Walle. Auger recombination rates in nitrides from first principles. Appl Phys Lett, 94, 191109(2009).

    [375] K T Delaney, P Rinke, C G Van de Walle. Erratum: " Auger recombination rates in nitrides from first principles” [Appl. Phys. Lett. 94, 191109(2009)]. Appl Phys Lett, 108, 259901(2016).

    [376] W Guo, M Zhang, P Bhattacharya et al. Auger recombination in III-nitride nanowires and its effect on nanowire light-emitting diode characteristics. Nano Lett, 11, 1434(2011).

    [377] L Liu, L Wang, N Liu et al. Investigation of the light emission properties and carrier dynamics in dual-wavelength InGaN/GaN multiple-quantum well light emitting diodes. J Appl Phys, 112, 083101(2012).

    [378] P Berdahl. Radiant refrigeration by semiconductor diodes. J Appl Phys, 58, 1369(1985).

    [379] A David, C A Hurni, N G Young et al. Electrical properties of III-Nitride LEDs: Recombination-based injection model and theoretical limits to electrical efficiency and electroluminescent cooling. Appl Phys Lett, 109, 083501(2016).

    [380] M G Kibria, R Qiao, W Yang et al. Atomic-scale origin of long-term stability and high performance of p-GaN nanowire arrays for photocatalytic overall pure water splitting. Adv Mater, 28, 8388(2016).

    [381] Y Yong, H Jiang, X Li et al. The cluster-assembled nanowires based on M12N12(M = Al and Ga) clusters as potential gas sensors for CO, NO, and NO2 detection. Phys Chem Chem Phys, 18, 21431(2016).

    [382] N Alfaraj, M M Muhammed, K H Li et al. Thermodynamic photoinduced disorder in AlGaN nanowires. AIP Adv, 7, 125113(2017).

    [383] N Alfaraj, S Mitra, F Wu et al. Photoinduced entropy of InGaN/GaN p–i–n double-heterostructure nanowires. Appl Phys Lett, 110, 161110(2017).

    [384] J B Wang, S Johnson, D Ding et al. Influence of photon recycling on semiconductor luminescence refrigeration. J Appl Phys, 100, 043502(2006).

    [385] P Dawson, S Schulz, R A Oliver et al. The nature of carrier localisation in polar and nonpolar InGaN/GaN quantum wells. J Appl Phys, 119, 181505(2016).

    [386] T J Badcock, P Dawson, M J Davies et al. Low temperature carrier redistribution dynamics in InGaN/GaN quantum wells. J Appl Phys, 115, 113505(2014).

    [387] C K Li, M Piccardo, L S Lu et al. Localization landscape theory of disorder in semiconductors. III. Application to carrier transport and recombination in light emitting diodes. Phys Rev B, 95, 144206(2017).

    [388] M Belloeil, B Gayral, B Daudin. Quantum dot-like behavior of compositional fluctuations in AlGaN nanowires. Nano Lett, 16, 960(2016).

    [389] S Zhao, S Y Woo, M Bugnet, X. Liu et al. Three-dimensional quantum confinement of charge carriers in self-organized AlGaN nanowires: A viable route to electrically injected deep ultraviolet lasers. Nano Lett, 15, 7801(2015).

    [390] S Mahajan. Phase separation and atomic ordering in mixed III nitride layers. Scr Mater, 75, 1(2014).

    [391] D Li, K Jiang, X Sun et al. AlGaN photonics: recent advances in materials and ultraviolet devices. Adv Opt Photonics, 10, 43(2018).

    [392] J He, S Wang, J Chen et al. Localized surface plasmon enhanced deep UV-emitting of AlGaN based multi-quantum wells by Al nanoparticles on SiO2 dielectric interlayer. Nanotechnology, 29, 195203(2018).

    [393] A Yoshikawa, T Nagatomi, T Morishita et al. High-quality AlN film grown on a nanosized concave-convex surface sapphire substrate by metalorganic vapor phase epitaxy. Appl Phys Lett, 111, 162102(2017).

    [394] K Jiang, X Sun, J Ben et al. The defect evolution in homoepitaxial AlN layers grown by high-temperature metal-organic chemical vapor deposition. Cryst Eng Comm, 20, 2720(2018).

    [395] M Miyoshi, M Ohta, T Mori et al. A comparative study of InGaN/GaN multiple-quantum-well solar sells grown on sapphire and AlN template by metalorganic chemical vapor deposition. Phys Status Solidi A, 215, 1700323(2018).

    [396] S Yoshida, S Misawa, S Gonda. Improvements on the electrical and luminescent properties of reactive molecular beam epitaxially grown GaN films by using AlN-coated sapphire substrates. Appl Phys Lett, 42, 427(1983).

    [397] H Amano, N Sawaki, I Akasaki et al. Metalorganic vapor phase epitaxial growth of a high quality GaN film using an AlN buffer layer. Appl Phys Lett, 48, 353(1986).

    [398] S Nakamura, M Senoh, T Mukai. P-GaN/N-InGaN/NGaN double-heterostructure blue-light-emitting diodes. Jpn J Appl Phys, 32, L8(1993).

    [399] M Asif Khan, J N Kuznia, D T Olson et al. Microwave performance of a 0.25 μm gate AlGaN/GaN heterostructure field effect transistor. Appl Phys Lett, 65, 1121(1994).

    [400] S Zhao, S Y Woo, S M Sadaf et al. Molecular beam epitaxy growth of Al-rich AlGaN nanowires for deep ultraviolet optoelectronics. APL Mater, 4, 086115(2016).

    [401] C Himwas, M Den Hertog, L S Dang et al. Alloy inhomogeneity and carrier localization in AlGaN sections and AlGaN/AlN nanodisks in nanowires with 240–350 nm emission. Appl Phys Lett, 105, 241908(2014).

    [402] A Khan, K Balakrishnan, T Katona. Ultraviolet light-emitting diodes based on group three nitrides. Nat Photonics, 2, 77(2008).

    [403] J Ristić, M Sánchez-García, E Calleja et al. AlGaN nanocolumns grown by molecular beam epitaxy: Optical and structural characterization. Phys Status Solidi A, 192, 60(2002).

    [404] T Q P Vuong, G Cassabois, P Valvin et al. Deep ultraviolet emission in hexagonal boron nitride grown by high-temperature molecular beam epitaxy. 2D Mater, 4, 021023(2017).

    [405] X Liu, S Zhao, B H Le et al. Molecular beam epitaxial growth and characterization of AlN nanowall deep UV light emitting diodes. Appl Phys Lett, 111, 101103(2017).

    [406] B K SaifAddin, A Almogbel, C Zollner et al. Fabrication technology for high light-extraction ultraviolet thin-film flip-chip (UV TFFC) LEDs grown on SiC. Semicond Sci Technol, 43, 035007(2019).

    [407] M S Alias, B Janjua, C Zhao et al. Enhancing the light-extraction efficiency of AlGaN nanowires ultraviolet light-emitting diode by using nitride/air distributed Bragg reflector nanogratings. IEEE Photonics J, 9, 4900508(2017).

    [408] J S Park, J K Kim, J Cho et al. Review- Group III-nitride-based ultraviolet light-emitting diodes: Ways of increasing external quantum efficiency. ECS J Solid State Sci Technol, 6, Q42(2017).

    [409]

    [410] K Yamada, Y Furusawa, S Nagai et al. Development of underfilling and encapsulation for deep-ultraviolet LEDs. Appl Phys Express, 8, 012101(2015).

    [411] N Maeda, H Hirayama. Realization of high-efficiency deep-UV LEDs using transparent p-AlGaN contact layer. Phys Status Solidi C, 10, 1521(2013).

    [412] B J Kim, H Jung, J Shin et al. Enhancement of light extraction efficiency of ultraviolet light emitting diodes by patterning of SiO2 nanosphere arrays. Thin Solid Films, 517, 2742(2009).

    [413] M Jo, N Maeda, H Hirayama. Enhanced light extraction in 260 nm light-emitting diode with a highly transparent pAlGaN layer. Appl Phys Express, 9, 012102(2016).

    [414] T Kinoshita, T Obata, H Yanagi et al. High p-type conduction in high-Al content Mg-doped AlGaN. Appl Phys Lett, 102, 012105(2013).

    [415] P Kozodoy, H Xing, S P DenBaars et al. Heavy doping effects in Mg-doped GaN. J Appl Phys, 87, 1832(2000).

    [416] Y Chen, H Wu, E Han et al. High hole concentration in p-type AlGaN by indium-surfactant-assisted Mg-delta doping. Appl Phys Lett, 106, 162102(2015).

    [417] Y Aoyagi, M Takeuchi, S Iwai et al. High hole carrier concentration realized by alternative co-doping technique in metal organic chemical vapor deposition. Appl Phys Lett, 99, 112110(2011).

    [418] M Z Kauser, A Osinsky, A M Dabiran et al. Enhanced vertical transport in p-type AlGaN/GaN superlattices. Appl Phys Lett, 85, 5275(2004).

    [419] W Luo, B Liu, Z Li et al. Enhanced p-type conduction in AlGaN grown by metal-source flow-rate modulation epitaxy. Appl Phys Lett, 113, 072107(2018).

    [420] T Detchprohm, Y S Liu, K Mehta et al. Sub 250 nm deep-UV AlGaN/AlN distributed Bragg reflectors. Appl Phys Lett, 110, 011105(2017).

    [421] M S Alias, A A Alatawi, W K Chong et al. High reflectivity YDH/SiO2 distributed Bragg reflector for UV-C wavelength regime. IEEE Photonics J, 10, 2200508(2018).

    [422] S Majety, J Li, X K Cao et al. Epitaxial growth and demonstration of hexagonal BN/AlGaN p–n junctions for deep ultraviolet photonics. Appl Phys Lett, 100, 061121(2012).

    [423] R Dahal, J Li, S Majety et al. Epitaxially grown semiconducting hexagonal boron nitride as a deep ultraviolet photonic material. Appl Phys Lett, 98, 211110(2011).

    [424] B He, W J Zhang, Z Q Yao et al. p-type conduction in beryllium-implanted hexagonal boron nitride films. Appl Phys Lett, 95, 252106(2009).

    [425] K Nose, H Oba, T Yoshida. Electric conductivity of boron nitride thin films enhanced by in situ doping of zinc. Appl Phys Lett, 89, 112124(2006).

    [426] M Lu, A Bousetta, A Bensaoula et al. Electrical properties of boron nitride thin films grown by neutralized nitrogen ion assisted vapor deposition. Appl Phys Lett, 68, 622(1996).

    [427] M L Nakarmi, K H Kim, M Khizar et al. Electrical and optical properties of Mg-doped Al0.7Ga0.3N alloys. Appl Phys Lett, 86, 092108(2005).

    [428] Q Yan, A Janotti, M Scheffler et al. Origins of optical absorption and emission lines in AlN. Appl Phys Lett, 105, 111104(2014).

    [429] M Takeuchi, S Ooishi, T Ohtsuka et al. Improvement of Al-polar AlN layer quality by three-stage flow-modulation metalorganic chemical vapor deposition. Appl Phys Express, 1, 021102(2008).

    [430] M Takeuchi, H Shimizu, R Kajitani et al. Al- and N-polar AlN layers grown on c-plane sapphire substrates by modified flow-modulation MOCVD. J Cryst Growth, 305, 360(2007).

    [431] J Kikkawa, Y Nakamura, N Fujinoki et al. Investigating the origin of intense photoluminescence in Si capping layer on Ge1–xSnx nanodots by transmission electron microscopy. J Appl Phys, 113, 074302(2013).

    [432] C Y Huang, P Y Wu, K S Chang et al. High-quality and highly-transparent AlN template on annealed sputter-deposited AlN buffer layer for deep ultraviolet light-emitting diodes. AIP Adv, 7, 055110(2017).

    [433] H Miyake, G Nishio, S Suzuki et al. Annealing of an AlN buffer layer in N2–CO for growth of a high-quality AlN film on sapphire. Appl Phys Express, 9, 025501(2016).

    [434] H Miyake, C H Lin, K Tokoro et al. Preparation of high-quality AlN on sapphire by high-temperature face-to-face annealing. J Cryst Growth, 456, 155(2016).

    [435] G F Iriarte. Influence of the magnetron on the growth of aluminum nitride thin films deposited by reactive sputtering. J Vac Sci Technol, 28, 193(2010).

    [436] K Ide, Y Matsubara, M Iwaya et al. Microstructure analysis of AlGaN on AlN underlying layers with different threading dislocation densities. Jpn J Appl Phys, 52, 08JE22(2013).

    [437] K Nonaka, T Asai, K Ban et al. Microstructural analysis of thick AlGaN epilayers using Mg-doped AlN underlying layer. Phys Status Solidi C, 8, 1467(2011).

    [438] T Asai, K Nonaka, K Ban et al. Growth of low-dislocation-density AlGaN using Mg-doped AlN underlying layer. Phys Status Solidi C, 7, 2101(2010).

    [439] H Sun, F Wu, T M Al Tahtamouni et al. Structural properties, crystal quality and growth modes of MOCVD-grown AlN with TMAl pretreatment of sapphire substrate. J Phys D, 50, 395101(2017).

    [440] L Hussey, R M White, R Kirste et al. Sapphire decomposition and inversion domains in N-polar aluminum nitride. Appl Phys Lett, 104, 032104(2014).

    [441] M H Wong, F Wu, J S Speck et al. Polarity inversion of N-face GaN using an aluminum oxide interlayer. J Appl Phys, 108, 123710(2010).

    [442] D H Lim, K Xu, S Arima et al. Polarity inversion of GaN films by trimethyl-aluminum preflow in low-pressure metalorganic vapor phase epitaxy growth. J Appl Phys, 91, 6461(2002).

    [443] D Eom, J Kim, K Lee et al. Fabrication of AlN nano-structures using polarity control by high temperature metalorganic chemical vapor deposition. J Nanosci Nanotechnol, 15, 5144(2015).

    [444] X Liu, C Sun, B Xiong et al. Aluminum nitride-on-sapphire platform for integrated high-Q microresonators. Opt Express, 25, 587(2017).

    [445] D Lee, J W Lee, J Jang et al. Improved performance of AlGaN-based deep ultraviolet light-emitting diodes with nanopatterned AlN/sapphire substrates. Appl Phys Lett, 110, 191103(2017).

    [446] S Zhou, H Hu, X Liu et al. Comparative study of GaN-based ultraviolet LEDs grown on different-sized patterned sapphire substrates with sputtered AlN nucleation layer. Jpn J Appl Phys, 56, 111001(2017).

    [447] S Wang, J Dai, J Hu et al. Ultrahigh degree of optical polarization above 80% in AlGaN-based deep-ultraviolet LED with moth-eye microstructure. ACS Photonics, 5, 3534(2018).

    [448] X Q Shen, T Takahashi, T Ide et al. High quality thin AlN epilayers grown on Si(110) substrates by metalorganic chemical vapor deposition. CrystEngComm, 19, 1204(2017).

    [449] B T Tran, N Maeda, M Jo et al. Performance improvement of AlN crystal quality grown on patterned Si(111) substrate for deep UV-LED applications. Sci Rep, 6, 35681(2016).

    [450] Y K Ooi, J Zhang. Light extraction efficiency analysis of flip-chip ultraviolet light-emitting diodes with patterned sapphire substrate. IEEE Photonics J, 10, 8200913(2018).

    [451] A Bhattacharyya, T D Moustakas, L Zhou et al. Deep ultraviolet emitting AlGaN quantum wells with high internal quantum efficiency. Appl Phys Lett, 94, 181907(2009).

    [452] N Susilo, J Enslin, L Sulmoni et al. Effect of the GaN:Mg contact layer on the light-output and current-voltage characteristic of UVB LEDs. Phys Status Solidi A, 215, 1700643(2018).

    [453] R Akaike, S Ichikawa, M Funato et al. AlxGa1–xN-based semipolar deep ultraviolet light-emitting diodes. Appl Phys Express, 11, 061001(2018).

    [454] X Liu, K Mashooq, T Szkopek et al. Improving the efficiency of transverse magnetic polarized emission from AlGaN based LEDs by using nanowire photonic crystal. IEEE Photonics J, 10, 4501211(2018).

    [455] D Liu, S J Cho, J Park et al. 229 nm UV LEDs on aluminum nitride single crystal substrates using p-type silicon for increased hole injection. Appl Phys Lett, 112, 081101(2018).

    [456] C Liu, Y K Ooi, S M Islam et al. 234 nm and 246 nm AlN-delta-GaN quantum well deep ultraviolet light-emitting diodes. Appl Phys Lett, 112, 011101(2018).

    [457] S i Inoue, N Tamari, M Taniguchi. 150 mW deep-ultraviolet light-emitting diodes with large-area AlN nanophotonic light-extraction structure emitting at 265 nm. Appl Phys Lett, 110, 141106(2017).

    [458] A T M G Sarwar, B J May et al. Effect of quantum well shape and width on deep ultraviolet emission in AlGaN nanowire LEDs. Phys Status Solidi A, 213, 947(2016).

    [459] T F Kent, S D Carnevale, A Sarwar et al. Deep ultraviolet emitting polarization induced nanowire light emitting diodes with AlxGa1–xN active regions. Nanotechnology, 25, 455201(2014).

    [460]

    [461] Y Liao, C Thomidis, C K Kao et al. AlGaN based deep ultraviolet light emitting diodes with high internal quantum efficiency grown by molecular beam epitaxy. Appl Phys Lett, 98, 081110(2011).

    [462] J S Cabalu, A Bhattacharyya, C Thomidis et al. High power ultraviolet light emitting diodes based on GaN/AlGaN quantum wells produced by molecular beam epitaxy. J Appl Phys, 100, 104506(2006).

    [463] R J Molnar, T Lei, T D Moustakas. Electron transport mechanism in gallium nitride. Appl Phys Lett, 62, 72(1993).

    [464] E Muñoz, E Monroy, F Calle et al. AlGaN photodiodes for monitoring solar UV radiation. J Geophys Res Atmos, 105, 4865(2000).

    [465] E Monroy, F Calle, J Pau et al. AlGaN-based UV photodetectors. J Cryst Growth, 230, 537(2001).

    [466] U Chowdhury, M M Wong, C J Collins et al. High-performance solar-blind photodetector using an Al0.6Ga0.4N n-type window layer. J Cryst Growth, 248, 552(2003).

    [467] A Asgari, E Ahmadi, M Kalafi. AlxGa1–xN/GaN multi-quantum-well ultraviolet detector based on p-i-n heterostructures. Microelectron J, 40, 104(2009).

    [468] T Larason, Y Ohno. Calibration and characterization of UV sensors for water disinfection. Metrologia, 43, S151(2006).

    [469] H M Oubei, C Shen, A Kammoun et al. Light based underwater wireless communications. Jpn J Appl Phys, 57, 08PA06(2018).

    [470] M R Werner, W R Fahrner. Review on materials, microsensors, systems and devices for high-temperature and harsh-environment applications. IEEE Trans Ind Electron, 48, 249(2001).

    [471] R Neuberger, G Müller, O Ambacher et al. High-electron-mobility AlGaN/GaN Transistors (HEMTs) for fluid monitoring applications. Phys Status Solidi A, 185, 85(2001).

    [472] R A Miller, H So, H C Chiamori et al. A microfabricated sun sensor using GaN-on-sapphire ultraviolet photodetector arrays. Rev Sci Instrum, 87, 095003(2016).

    [473] W G Alheadary, K H Park, N Alfaraj et al. Free-space optical channel characterization and experimental validation in a coastal environment. Opt Express, 26, 6614(2018).

    [474] G de Graaf, R F Wolffenbuttel. Illumination source identification using a CMOS optical microsystem. IEEE Trans Instrum Meas, 53, 238(2004).

    [475] M H Ji, J Kim, T Detchprohm et al. p–i–p–i–n separate absorption and multiplication ultraviolet avalanche photodiodes. IEEE Photonics Technol Lett, 30, 181(2018).

    [476] J Zheng, L Wang, X Wu et al. A PMT-like high gain avalanche photodiode based on GaN/AlN periodically stacked structure. Appl Phys Lett, 109, 241105(2016).

    [477] J Li, Z Y Fan, R Dahal et al. 200 nm deep ultraviolet photodetectors based on AlN. Appl Phys Lett, 89, 213510(2006).

    [478] M A Khan, J N Kuznia, D T Olson et al. High-responsivity photoconductive ultraviolet sensors based on insulating single-crystal GaN epilayers. Appl Phys Lett, 60, 2917(1992).

    [479] T Tut, N Biyikli, I Kimukin et al. High bandwidth-efficiency solar-blind AlGaN Schottky photodiodes with low dark current. SolidState Electron, 49, 117(2005).

    [480] N Biyikli, I Kimukin, T Kartaloglu et al. High-speed solar-blind AlGaN-based metal-semiconductor- metal photodetectors. Phys Status Solidi C, 0, 2314(2003).

    [481] N Biyikli, O Aytur, I Kimukin et al. Solar-blind AlGaN-based Schottky photodiodes with low noise and high detectivity. Appl Phys Lett, 81, 3272(2002).

    [482] B Pandit, J Cho. Metal-semiconductor-metal ultraviolet photodiodes based on reduced graphene oxide/GaN Schottky contacts. Thin Solid Films, 660, 824(2018).

    [483] M Brendel, F Brunner, M Weyers. On the EQE-bias characteristics of bottom-illuminated AlGaN-based metal–semiconductor–metal photodetectors with asymmetric electrode geometry. J Appl Phys, 122, 174501(2017).

    [484] M Brendel, M Helbling, A Knauer et al. Top- and bottom-illumination of solar-blind AlGaN metal-semiconductor-metal photodetectors. Phys Status Solidi A, 212, 1021(2015).

    [485] M Brendel, M Helbling, A Knigge et al. Measurement and simulation of top- and bottom-illuminated solar-blind AlGaN metal–semiconductor–metal photodetectors with high external quantum efficiencies. J Appl Phys, 118, 244504(2015).

    [486] S Butun, T Tut, B Butun et al. Deep-ultraviolet Al0.75Ga0.25N photodiodes with low cutoff wavelength. Appl Phys Lett, 88, 123503(2006).

    [487] T Narita, A Wakejima, T Egawa. Ultraviolet photodetectors using transparent gate AlGaN/GaN high electron mobility transistor on silicon substrate. Jpn J Appl Phys, 52, 01AG06(2013).

    [488] T Tut, T Yelboga, E Ulker et al. Solar-blind AlGaN-based p–i–n photodetectors with high breakdown voltage and detectivity. Appl Phys Lett, 92, 103502(2008).

    [489] A Teke, S Dogan, L He et al. p-GaN-i-GaN/AlGaN multiple-quantum well n-AlGaN back-illuminated ultraviolet detectors. J Electron Mater, 32, 307(2003).

    [490] C J Collins, U Chowdhury, M M Wong et al. Improved solar-blind detectivity using an AlxGa1–xN heterojunction p–i–n photodiode. Appl Phys Lett, 80, 3754(2002).

    [491] M M Wong, U Chowdhury, C J Collins et al. High quantum efficiency AlGaN/GaN solar-blind photodetectors grown by metalorganic chemical vapor deposition. Phys Status Solidi A, 188, 333(2001).

    [492] N Biyikli, I Kimukin, T Kartaloglu et al. High-speed solar-blind photodetectors with indium-tin-oxide Schottky contacts. Appl Phys Lett, 82, 2344(2003).

    [493] S V Averin, P I Kuznetzov, V A Zhitov et al. Solar-blind MSM-photodetectors based on AlxGa1–xN heterostructures. Opt Quant Electron, 39, 181(2007).

    [494] G Wang, F Xie, H Lu et al. Performance comparison of front-and back-illuminated AlGaN-based metal–semiconductor–metal solar-blind ultraviolet photodetectors. J Vac Sci Technol B, 31, 011202(2013).

    [495] I M Høiaas, Mulyo A Liudi, P E Vullum et al. GaN/AlGaN nanocolumn ultraviolet LED using double-layer graphene as substrate and transparent electrode. Nano Lett, 19, 1649(2019).

    [496] S Fernández-Garrido, M Ramsteiner, G Gao et al. Molecular beam epitaxy of GaN nanowires on epitaxial graphene. Nano Lett, 17, 5213(2017).

    [497] A A Tonkikh, V I Tsebro, E A Obraztsova et al. Films of filled singlewall carbon nanotubes as a new material for high-performance air-sustainable transparent conductive electrodes operating in a wide spectral range. Nanoscale, 11, 6755(2019).

    [498] N Boulanger, D R Barbero. Nanostructured networks of single wall carbon nanotubes for highly transparent, conductive, and anti-reflective flexible electrodes. Appl Phys Lett, 103, 021116(2013).

    [499] B G A L Borges, S Holakoei, M F F das Neves et al. Molecular orientation and femtosecond charge transfer dynamics in transparent and conductive electrodes based on graphene oxide and PEDOT:PSS composites. Phys Chem Chem Phys, 21, 736(2019).

    [500] X Yan, J Ma, H Xu et al. Fabrication of silver nanowires and metal oxide composite transparent electrodes and their application in UV light-emitting diodes. J Phys D, 49, 325103(2016).

    [501] M Brendel, A Knigge, F Brunner et al. Anisotropic responsivity of AlGaN metal-semiconductor-metal photodetectors on epitaxial laterally overgrown AlN/sapphire templates. J Electron Mater, 43, 833(2014).

    [502] J Schlegel, M Brendel, M Martens et al. Influence of carrier lifetime, transit time, and operation voltages on the photoresponse of visible-blind AlGaN metal–semiconductor–metal photodetectors. Jpn J Appl Phys, 52, 08JF01(2013).

    [503] S Rathkanthiwar, A Kalra, R Muralidharan et al. Analysis of screw dislocation mediated dark current in Al0.50Ga0.50N solar-blind metal-semiconductor-metal photodetectors. J Cryst Growth, 498, 35(2018).

    [504] H Y Liu, Y H Wang, W C Hsu. Suppression of dark current on AlGaN/GaN metal-semiconductor-metal photodetectors. IEEE Sens J, 15, 5202(2015).

    [505] D Li, X Sun, H Song et al. Influence of threading dislocations on GaN-based metal–semiconductor–metal ultraviolet photodetectors. Appl Phys Lett, 98, 011108(2011).

    [506] S Walde, M Brendel, U Zeimer et al. Impact of open-core threading dislocations on the performance of AlGaN metal-semiconductor-metal photodetectors. J Appl Phys, 123, 161551(2018).

    [507] A Yoshikawa, S Ushida, K Nagase et al. High-performance solar-blind Al0.6Ga0.4N/Al0.5Ga0.5N MSM type photodetector. Appl Phys Lett, 111, 191103(2017).

    [508] S Kang, R Nandi, H Kim et al. Synthesis of n-AlGaN nanoflowers by MOCVD for high-performance ultraviolet-C photodetectors. J Mater Chem C, 6, 1176(2018).

    [509] E Cicek, R McClintock, Z Vashaei et al. Crack-free AlGaN for solar-blind focal plane arrays through reduced area epitaxy. Appl Phys Lett, 102, 051102(2013).

    [510] E Cicek, Z Vashaei, E Kw Huang et al. AlxGa1–xN-based deep-ultraviolet 320 × 256 focal plane array. Opt Lett, 37, 896(2012).

    [511] E Cicek, R McClintock, C Y Cho et al. AlxGa1–xN-based back-illuminated solar-blind photodetectors with external quantum efficiency of 89%. Appl Phys Lett, 103, 191108(2013).

    [512] V Adivarahan, G Simin, G Tamulaitis et al. Indium-silicon co-doping of high-aluminum-content AlGaN for solar blind photodetectors. Appl Phys Lett, 79, 1903(2001).

    [513] W Y Han, Z W Zhang, Z M Li et al. High performance back-illuminated MIS structure AlGaN solar-blind ultraviolet photodiodes. J Mater Sci Mater Electron, 29, 9077(2018).

    [514] Y Chen, Z Zhang, H Jiang et al. The optimized growth of AlN templates for back-illuminated AlGaN-based solar-blind ultraviolet photodetectors by MOCVD. J Mater Chem C, 6, 4936(2018).

    [515] B Albrecht, S Kopta, O John et al. Improved AlGaN p–i–n photodetectors for monitoring of ultraviolet radiation. IEEE J Sel Top Quantum Electron, 20, 3802507(2014).

    [516] E Ozbay, N Biyikli, I Kimukin et al. High-performance solar-blind photodetectors based on AlxGa1–xN heterostructures. IEEE J Sel Top Quantum Electron, 10, 742(2004).

    [517] S Muhtadi, S M Hwang, A L Coleman et al. High-speed solar-blind UV photodetectors using high-Al content Al0.64Ga0.36N/ Al0.34Ga0.66N multiple quantum wells. Appl Phys Express, 10, 011004(2017).

    [518] A V Babichev, H Zhang, P Lavenus et al. GaN nanowire ultraviolet photodetector with a graphene transparent contact. Appl Phys Lett, 103, 201103(2013).

    [519] S Kang, U Chatterjee, D Y Um et al. Ultraviolet-C photodetector fabricated using Si-doped n-AlGaN nanorods grown by MOCVD. ACS Photonics, 4, 2595(2017).

    [520] Y Zou, Y Zhang, Y Hu et al. Ultraviolet detectors based on wide bandgap semiconductor nanowire: A review. Sensors, 18, 2072(2018).

    [521] Q Cai, W K Luo, Q Li et al. AlGaN ultraviolet avalanche photodiodes based on a triple-mesa structure. Appl Phys Lett, 113, 123503(2018).

    [522] Z G Shao, D J Chen, H Lu et al. High-gain AlGaN solar-blind avalanche photodiodes. IEEE Electron Device Lett, 35, 372(2014).

    [523] E Bellotti, F Bertazzi, S Shishehchi et al. Theory of carriers transport in III-nitride materials: State of the art and future outlook. IEEE Trans Electron Devices, 60, 3204(2013).

    [524] Z Huang, J Li, W Zhang et al. AlGaN solar-blind avalanche photodiodes with enhanced multiplication gain using back-illuminated structure. Appl Phys Express, 6, 054101(2013).

    [525] Y Huang, D J Chen, H Lu et al. Back-illuminated separate absorption and multiplication AlGaN solar-blind avalanche photodiodes. Appl Phys Lett, 101, 253516(2012).

    [526] L Sun, J Chen, J Li et al. AlGaN solar-blind avalanche photodiodes with high multiplication gain. Appl Phys Lett, 97, 191103(2010).

    [527] R Dahal, T M Al Tahtamouni, J Y Lin. AlN avalanche photodetectors. Appl Phys Lett, 91, 243503(2007).

    [528] R Dahal, T M Al Tahtamouni, Z Y Fan et al. Hybrid AlN-SiC deep ultraviolet Schottky barrier photodetectors. Appl Phys Lett, 90, 263505(2007).

    [529] R McClintock, A Yasan, K Minder et al. Avalanche multiplication in AlGaN based solar-blind photodetectors. Appl Phys Lett, 87, 241123(2005).

    [530] S Nikzad, M Hoenk, A Jewell et al. Single photon counting UV solar-blind detectors using silicon and III–nitride materials. Sensors, 16, 927(2016).

    [531] J L Pau, R McClintock, K Minder et al. Geiger-mode operation of back-illuminated GaN avalanche photodiodes. Appl Phys Lett, 91, 041104(2007).

    [532] J Kim, M H Ji, T Detchprohm et al. Comparison of AlGaN p–i–n ultraviolet avalanche photodiodes grown on free-standing GaN and sapphire substrates. Appl Phys Express, 8, 122202(2015).

    [533] H Wu, W Wu, H Zhang et al. All AlGaN epitaxial structure solar-blind avalanche photodiodes with high efficiency and high gain. Appl Phys Express, 9, 052103(2016).

    [534] L Hahn, F Fuchs, L Kirste et al. Avalanche multiplication in AlGaN-based heterostructures for the ultraviolet spectral range. Appl Phys Lett, 112, 151102(2018).

    [535] Z Shao, D Chen, Y Liu et al. Significant performance improvement in AlGaN solar-blind avalanche photodiodes by exploiting the built-in polarization electric field. IEEE J Sel Top Quantum Electron, 20, 3803306(2014).

    [536] D Walker, V Kumar, K Mi et al. Solar-blind AlGaN photodiodes with very low cutoff wavelength. Appl Phys Lett, 76, 403(2000).

    [537] M Gökkavas, S Butun, T Tut et al. AlGaN-based high-performance metal-semiconductor-metal photodetectors. Photonics Nanostruct: Fundam Appl, 5, 53(2007).

    [538] N Izyumskaya, D O Demchenko, S Das et al. Recent development of boron nitride towards electronic applications. Adv Electron Mater, 3, 1600485(2017).

    [539] E Monroy, F Omnès, F Calle. Wide-bandgap semiconductor ultraviolet photodetectors. Semicond Sci Technol, 18, R33(2003).

    [540] E Munoz, E Monroy, J Pau et al. III nitrides and UV detection. J Phys Condens Matter, 13, 7115(2001).

    [541] L Rodak, A Sampath, C Gallinat et al. Solar-blind AlxGa1–xN/ AlN/SiC photodiodes with a polarization-induced electron filter. Appl Phys Lett, 103, 071110(2013).

    [542] M Spies, M I Den Hertog, P Hille et al. Bias-controlled spectral response in GaN/AlN single-nanowire ultraviolet photodetectors. Nano Lett, 17, 4231(2017).

    [543] S Nikishin, B Borisov, M Pandikunta et al. High quality AlN for deep UV photodetectors. Appl Phys Lett, 95, 054101(2009).

    [544] H A Barkad, A Soltani, M Mattalah et al. Design, fabrication and physical analysis of TiN/AlN deep UV photodiodes. J Phys D, 43, 465104(2010).

    [545] C P Laksana, M R Chen, Y Liang et al. Deep-UV sensors based on SAW oscillators using low-temperature-grown AlN films on sapphires. IEEE Trans Ultrason Ferroelectr Freq Control, 58, 1688(2011).

    [546] A Soltani, H Barkad, M Mattalah et al. 193 nm deep-ultraviolet solar-blind cubic boron nitride based photodetectors. Appl Phys Lett, 92, 053501(2008).

    [547] J Li, S Majety, R Dahal et al. Dielectric strength, optical absorption, and deep ultraviolet detectors of hexagonal boron nitride epilayers. Appl Phys Lett, 101, 171112(2012).

    [548] N Yang, X Zeng, J Lu et al. Effect of chemical functionalization on the thermal conductivity of 2D hexagonal boron nitride. Appl Phys Lett, 113, 171904(2018).

    [549] M Sajjad, W M Jadwisienczak, P Feng. Nanoscale structure study of boron nitride nanosheets and development of a deep-UV photo-detector. Nanoscale, 6, 4577(2014).

    [550] H Liu, J Meng, X Zhang et al. High-performance deep ultraviolet photodetectors based on few-layer hexagonal boron nitride. Nanoscale, 10, 5559(2018).

    [551]

    [552] H Tian, Q Liu, A Hu et al. Hybrid graphene/GaN ultraviolet photo-transistors with high responsivity and speed. Opt Express, 26, 5408(2018).

    [553] H Tian, Q Liu, C Zhou et al. Hybrid graphene/unintentionally doped GaN ultraviolet photodetector with high responsivity and speed. Appl Phys Lett, 113, 121109(2018).

    [554] T H Seo, K J Lee, A H Park et al. Enhanced light output power of near UV light emitting diodes with graphene/indium tin oxide nanodot nodes for transparent and current spreading electrode. Opt Express, 19, 23111(2011).

    [555]

    [556] L X Qian, H Y Liu, H F Zhang et al. Simultaneously improved sensitivity and response speed of β-Ga2O3 solar-blind photodetector via localized tuning of oxygen deficiency. Appl Phys Lett, 114, 113506(2019).

    [557] Y Xu, Z An, L Zhang et al. Solar blind deep ultraviolet β-Ga2O3 photodetectors grown on sapphire by the Mist-CVD method. Opt Mater Express, 8, 2941(2018).

    [558] S Rathkanthiwar, A Kalra, S V Solanke et al. Gain mechanism and carrier transport in high responsivity AlGaN-based solar blind metal semiconductor metal photodetectors. J Appl Phys, 121, 164502(2017).

    [559] R Zhuo, L Zeng, H Yuan et al. In-situ fabrication of PtSe2/GaN heterojunction for self-powered deep ultraviolet photodetector with ultrahigh current on/off ratio and detectivity. Nano Res, 12, 183(2019).

    [560] R Zhuo, Y Wang, D Wu et al. High-performance self-powered deep ultraviolet photodetector based on MoS2/GaN p-n heterojunction. J Mater Chem C, 6, 299(2018).

    [561] T He, Y Zhao, X Zhang et al. Solar-blind ultraviolet photodetector based on graphene/vertical Ga2O3 nanowire array heterojunction. Nanophotonics, 7, 1557(2018).

    [562] R Lin, W Zheng, D Zhang et al. High-performance graphene/β-Ga2O3 heterojunction deep-ultraviolet photodetector with hot-electron excited carrier multiplication. ACS Appl Mater Interfaces, 10, 22419(2018).

    [563] Y Lu, Z Wu, W Xu et al. ZnO quantum dot-doped graphene/h-BN/GaN-heterostructure ultraviolet photodetector with extremely high responsivity. Nanotechnology, 27, 48LT03(2016).

    [564] M Ai, D Guo, Y Qu et al. Fast-response solar-blind ultraviolet photodetector with a graphene/β-Ga2O3/graphene hybrid structure. J Alloys Compd, 692, 634(2017).

    [565] M Kumar, H Jeong, K Polat et al. Fabrication and characterization of graphene/AlGaN/GaN ultraviolet Schottky photodetector. J Phys D, 49, 275105(2016).

    [566] M Martens, F Mehnke, C Kuhn et al. Performance characteristics of UV-C AlGaN-based lasers grown on sapphire and bulk AlN substrates. IEEE Photonics Technol Lett, 26, 342(2014).

    [567] J Xie, S Mita, Z Bryan et al. Lasing and longitudinal cavity modes in photo-pumped deep ultraviolet AlGaN heterostructures. Appl Phys Lett, 102, 171102(2013).

    [568] T Wunderer, C Chua, J Northrup et al. Optically pumped UV lasers grown on bulk AlN substrates. Phys Status Solidi C, 9, 822(2012).

    [569] V N Jmerik, A M Mizerov, T V Shubina et al. Optically pumped lasing at 300.4 nm in AlGaN MQW structures grown by plasmaassisted molecular beam epitaxy on c-Al2O3. Phys Status Solidi A, 207, 1313(2010).

    [570] T Takano, Y Narita, A Horiuchi et al. Room-temperature deep-ultraviolet lasing at 241.5 nm of AlGaN multiple-quantum-well laser. Appl Phys Lett, 84, 3567(2004).

    [571] M Martens, C Kuhn, T Simoneit et al. The effects of magnesium doping on the modal loss in AlGaN-based deep UV lasers. Appl Phys Lett, 110, 081103(2017).

    [572] E F Pecora, H Sun, L Dal Negro et al. Deep-UV optical gain in AlGaN-based graded-index separate confinement heterostructure. Opt Mater Express, 5, 809(2015).

    [573] H Zhu, C X Shan, B H Li et al. Low-threshold electrically pumped ultraviolet laser diode. J Mater Chem, 21, 2848(2011).

    [574] H Yoshida, Y Yamashita, M Kuwabara et al. A 342-nm ultraviolet AlGaN multiple-quantum-well laser diode. Nat Photonics, 2, 551(2008).

    [575] J Sellés, C Brimont, G Cassabois et al. Deep-UV nitride-on-silicon microdisk lasers. Sci Rep, 6, 21650(2016).

    [576] S Zhao, Z. Mi. AlGaN nanowires: Path to electrically injected semiconductor deep ultraviolet lasers. IEEE J Quantum Electron, 54, 2001009(2018).

    [577] S Zhao, X Liu, Y Wu et al. An electrically pumped 239 nm AlGaN nanowire laser operating at room temperature. Appl Phys Lett, 109, 191106(2016).

    [578] S Zhao, X Liu, S Woo et al. An electrically injected AlGaN nanowire laser operating in the ultraviolet-C band. Appl Phys Lett, 107, 043101(2015).

    [579] R Pan, U Retzer, T Werblinski et al. Generation of high-energy, kilohertz-rate narrowband tunable ultraviolet pulses using a burst-mode dye laser system. Opt Lett, 43, 1191(2018).

    [580] Y Higase, S Morita, T Fujii et al. High-gain and wide-band optical amplifications induced by a coupled excited state of organic dye molecules co-doped in polymer waveguide. Opt Lett, 43, 1714(2018).

    [581] H Yamamoto, T Oyamada, H Sasabe et al. Amplified spontaneous emission under optical pumping from an organic semiconductor laser structure equipped with transparent carrier injection electrodes. Appl Phys Lett, 84, 1401(2004).

    [582] N Tsutsumi, T Kawahira, W Sakai. Amplified spontaneous emission and distributed feedback lasing from a conjugated compound in various polymer matrices. Appl Phys Lett, 83, 2533(2003).

    [583] H Kogelnik, C V Shank. Stimulated emission in a periodic structure. Appl Phys Lett, 18, 152(1971).

    [584] Z Lochner, T T Kao, Y S Liu et al. Deep-ultraviolet lasing at 243 nm from photo-pumped AlGaN/AlN heterostructure on AlN substrate. Appl Phys Lett, 102, 101110(2013).

    [585] T T Kao, Y S Liu, M M Satter et al. Sub-250 nm low-threshold deep-ultraviolet AlGaN-based heterostructure laser employing HfO2/SiO2 dielectric mirrors. Appl Phys Lett, 103, 211103(2013).

    [586] M Shatalov, M Gaevski, V Adivarahan et al. Room-temperature stimulated emission from AlN at 214 nm. J Appl Phys, 45, L1286(2006).

    [587] T Klein, S Klembt, V Kozlovsky et al. High-power green and blue electron-beam pumped surface-emitting lasers using dielectric and epitaxial distributed Bragg reflectors. J Appl Phys, 117, 113106(2015).

    [588] T Oto, R G Banal, K Kataoka et al. 100 mW deep-ultraviolet emission from aluminium-nitride-based quantum wells pumped by an electron beam. Nat Photonics, 4, 767(2010).

    [589] I Demir, H Li, Y Robin et al. Sandwich method to grow high quality AlN by MOCVD. J Phys D, 51, 085104(2018).

    [590] B T Tran, H Hirayama, M Jo et al. High-quality AlN template grown on a patterned Si(111) substrate. J Cryst Growth, 468, 225(2017).

    [591] K Kataoka, M Funato, Y Kawakami. Development of polychromatic ultraviolet light-emitting diodes based on three-dimensional AlGaN quantum wells. Appl Phys Express, 10, 121001(2017).

    [592] K Kataoka, M Funato, Y Kawakami. Deep-ultraviolet polychromatic emission from three-dimensionally structured AlGaN quantum wells. Appl Phys Express, 10, 031001(2017).

    [593] M Funato, K Hayashi, M Ueda et al. Emission color tunable light-emitting diodes composed of InGaN multifacet quantum wells. Appl Phys Lett, 93, 021126(2008).

    [594] M Kaneda, C Pernot, Y Nagasawa et al. Uneven AlGaN multiple quantum well for deep-ultraviolet LEDs grown on macrosteps and impact on electroluminescence spectral output. Jpn J Appl Phys, 56, 061002(2017).

    [595] C Pernot, S Fukahori, T Inazu et al. Development of high efficiency 255–355 nm AlGaN-based light-emitting diodes. Phys Status Solidi A, 208, 1594(2011).

    [596] C Pernot, M Kim, S Fukahori et al. Improved efficiency of 255–280 nm AlGaN-based light-emitting diodes. Appl Phys Express, 3, 061004(2010).

    [597] K Nagamatsu, N Okada, H Sugimura et al. High-efficiency AlGaN-based UV light-emitting diode on laterally overgrown AlN. J Cryst Growth, 310, 2326(2008).

    [598] T Harada, Y Oda, J Motohisa et al. Novel nanofaceting structures grown on patterned vicinal (110) GaAs substrates by metal-organic vapor phase epitaxy (MOVPE). Jpn J Appl Phys, 39, 7090(2000).

    [599] Y Oda, T Fukui. Natural formation of multiatomic steps on patterned vicinal substrates by MOVPE and application to GaAs QWR structures. J Cryst Growth, 195, 6(1998).

    [600] N Susilo, S Hagedorn, D Jaeger et al. AlGaN-based deep UV LEDs grown on sputtered and high temperature annealed AlN/sapphire. Appl Phys Lett, 112, 041110(2018).

    [601] C He, W Zhao, H Wu et al. High-quality AlN film grown on sputtered AlN/sapphire via growth-mode modification. Cryst Growth Des, 18, 6816(2018).

    [602] S Xiao, R Suzuki, H Miyake et al. Improvement mechanism of sputtered AlN films by high-temperature annealing. J Cryst Growth, 502, 41(2018).

    [603] L Zhao, K Yang, Y Ai et al. Crystal quality improvement of sputtered AlN film on sapphire substrate by high-temperature annealing. J Mater Sci Mater Electron, 29, 13766(2018).

    [604] J Ben, X Sun, Y Jia et al. Defect evolution in AlN templates on PVD-AlN/sapphire substrates by thermal annealing. Cryst Eng Comm, 20, 4623(2018).

    [605] L Zhao, S Zhang, Y Zhang et al. AlGaN-based ultraviolet light-emitting diodes on sputter-deposited AlN templates with epitaxial AlN/AlGaN superlattices. Superlattices Microstruct, 113, 713(2018).

    [606] J T Oh, Y T Moon, D S Kang et al. High efficiency ultraviolet GaN-based vertical light emitting diodes on 6-inch sapphire substrate using ex-situ sputtered AlN nucleation layer. Opt Express, 26, 5111(2018).

    [607] C He, W Zhao, K Zhang et al. High-quality GaN epilayers achieved by facet-controlled epitaxial lateral overgrowth on sputtered AlN/PSS templates. ACS Appl Mater Interfaces, 9, 43386(2017).

    [608] Z Chen, J Zhang, S Xu et al. Influence of stacking faults on the quality of GaN films grown on sapphire substrate using a sputtered AlN nucleation layer. Mater Res Bull, 89, 193(2017).

    [609] Z Chen, J Zhang, S Xu et al. Effect of AlN interlayer on the impurity incorporation of GaN film grown on sputtered AlN. J Alloys Compd, 710, 756(2017).

    [610] L Zhang, F Xu, M Wang et al. High-quality AlN epitaxy on sapphire substrates with sputtered buffer layers. Superlattices Microstruct, 105, 34(2017).

    [611] R Yoshizawa, H Miyake, K Hiramatsu. Effect of thermal annealing on AlN films grown on sputtered AlN templates by metalorganic vapor phase epitaxy. Jpn J Appl Phys, 57, 01AD05(2017).

    [612] M Funato, M Shibaoka, Y Kawakami. Heteroepitaxy mechanisms of AlN on nitridated c-and a-plane sapphire substrates. J Appl Phys, 121, 085304(2017).

    [613] N Okada, N Kato, S Sato et al. Growth of high-quality and crack free AlN layers on sapphire substrate by multi-growth mode modification. J Cryst Growth, 298, 349(2007).

    [614] H Chang, Z Chen, W Li et al. Graphene-assisted quasi-van der Waals epitaxy of AlN film for ultraviolet light emitting diodes on nano-patterned sapphire substrate. Appl Phys Lett, 114, 091107(2019).

    [615] L Zhang, X Li, Y Shao, J Yu et al. Improving the quality of GaN crystals by using graphene or hexagonal boron nitride nanosheets substrate. ACS Appl Mater Interfaces, 7, 4504(2015).

    [616] J Kim, C Bayram, H Park et al. Principle of direct van der Waals epitaxy of single-crystalline films on epitaxial graphene. Nat Commun, 5, 4836(2014).

    [617] N Han, T V Cuong, M Han et al. Improved heat dissipation in gallium nitride light-emitting diodes with embedded graphene oxide pattern. Nat Commun, 4, 1452(2013).

    [618] R Roy, V G Hill, E F Osborn. Polymorphism of Ga2O3 and the system Ga2O3–H2O. J Am Chem Soc, 74, 719(1952).

    [619] S H Han, A Mauze, E Ahmadi et al. n-type dopants in (001) β-Ga2O3 grown on (001) β-Ga2O3 substrates by plasma-assisted molecular beam epitaxy. Semicond Sci Technol, 33, 045001(2018).

    [620] K Sasaki, A Kuramata, T Masui et al. Device-quality β-Ga2O3 epitaxial films fabricated by ozone molecular beam epitaxy. Appl Phys Express, 5, 035502(2012).

    [621] K Shimamura, E G Víllora, K Domen et al. Epitaxial growth of GaN on (100) β-Ga2O3 substrates by metalorganic vapor phase epitaxy. Jpn J Appl Phys, 44, L7(2005).

    [622] E G Víllora, K Shimamura, K Aoki et al. Molecular beam epitaxy of c-plane wurtzite GaN on nitridized a-plane β-Ga2O3. Thin Solid Films, 500, 209(2006).

    [623] S Ohira, N Suzuki, H Minami et al. Growth of hexagonal GaN films on the nitridated β-Ga2O3 substrates using RF-MBE. Phys Status Solidi C, 4, 2306(2007).

    [624] K Kachel, M Korytov, D Gogova et al. A new approach to free-standing GaN using β-Ga2O3 as a substrate. Cryst Eng Comm, 14, 8536(2012).

    [625] S Ito, K Takeda, K Nagata et al. Growth of GaN and AlGaN on (100) β-Ga2O3 substrates. Phys Status Solidi C, 9, 519(2012).

    [626] I A Ajia, Y Yamashita, K Lorenz et al. GaN/AlGaN multiple quantum wells grown on transparent and conductive (-201)-oriented β-Ga2O3 substrate for UV vertical light emitting devices. Appl Phys Lett, 113, 082102(2018).

    [627] K Yamada, Y Nagasawa, S Nagai et al. Study on the main-chain structure of amorphous fluorine resins for encapsulating AlGaN-based DUV-LEDs. Phys Status Solidi A, 215, 1700525(2018).

    [628] S Nagai, K Yamada, A Hirano et al. Development of highly durable deep-ultraviolet AlGaN-based LED multichip array with hemispherical encapsulated structures using a selected resin through a detailed feasibility study. Jpn J Appl Phys, 55, 082101(2016).

    [629] R Liang, J Dai, L Xu et al. Interface anchored effect on improving working stability of deep ultraviolet light-emitting diode using graphene oxide-based fluoropolymer encapsulant. ACS Appl Mater Interfaces, 10, 8238(2018).

    [630] K C Shen, C T Ku, C Hsieh et al. Deep-ultraviolet hyperbolic metacavity laser. Adv Mater, 30, 1706918(2018).

    [631] K C Shen, C Hsieh, Y J Cheng et al. Giant enhancement of emission efficiency and light directivity by using hyperbolic metacavity on deep-ultraviolet AlGaN emitter. Nano Energy, 45, 353(2018).

    [632] M Tangi, P Mishra, C C Tseng et al. Band alignment at GaN/single-layer WSe2 interface. ACS Appl Mater Interfaces, 9, 9110(2017).

    [633] P Mishra, M Tangi, T K Ng et al. Impact of N-plasma and Ga-irradiation on MoS2 layer in molecular beam epitaxy. Appl Phys Lett, 110, 012101(2017).

    [634] C Zhao, T K Ng, C C Tseng et al. InGaN/GaN nanowires epitaxy on large-area MoS2 for high-performance light-emitters. RSC Adv, 7, 26665(2017).

    [635] M Tangi, P Mishra, M Y Li et al. Type-I band alignment at MoS2/In0.15Al0.85N lattice matched heterojunction and realization of MoS2 quantum well. Appl Phys Lett, 111, 092104(2017).

    [636] M Tangi, P Mishra, T K Ng et al. Determination of band offsets at GaN/single-layer MoS2 heterojunction. Appl Phys Lett, 109, 032104(2016).

    [637] P Gupta, A Rahman, S Subramanian et al. Layered transition metal dichalcogenides: Promising near-lattice-matched substrates for GaN growth. Sci Rep, 6, 23708(2016).

    [638] O Lopez-Sanchez, D Lembke, M Kayci et al. Ultrasensitive photodetectors based on monolayer MoS2. Nat Nanotech, 8, 497(2013).

    [639] Z Yin, H Li, H Li, L Jiang et al. Single-layer MoS2 phototransistors. ACS Nano, 6, 74(2011).

    [640] N Saigal, I Wielert, D Čapeta et al. Effect of lithium doping on the optical properties of monolayer MoS2. Appl Phys Lett, 112, 121902(2018).

    [641] A Splendiani, L Sun, Y Zhang et al. Emerging photoluminescence in monolayer MoS2. Nano Lett, 10, 1271(2010).

    [642] K F Mak, C Lee, J Hone et al. Atomically thin MoS2: A new direct-gap semiconductor. Phys Rev Lett, 105, 136805(2010).

    [643] N D Bharathi, K Sivasankaran. Research progress and challenges of two dimensional MoS2 field effect transistors. J Semicond, 39, 104002(2018).

    [644] Y Pak, Y Kim, N Lim et al. Scalable integration of periodically aligned 2D-MoS2 nanoribbon array. APL Mater, 6, 076102(2018).

    [645] C Y Huang, C Chang, G Z Lu et al. Hybrid 2D/3D MoS2/GaN heterostructures for dual functional photoresponse. Appl Phys Lett, 112, 233106(2018).

    [646] B Grisafe, R Zhao, R K Ghosh et al. Electrically triggered insulator-to-metal phase transition in two-dimensional (2D) heterostructures. Appl Phys Lett, 113, 142101(2018).

    [647] M Ahmad, D Varandani, B R Mehta. Large surface charge accumulation in 2D MoS2/Sb2Te3 junction and its effect on junction properties: KPFM based study. Appl Phys Lett, 113, 141603(2018).

    [648] K Roy, M Padmanabhan, S Goswami et al. Graphene-MoS2 hybrid structures for multifunctional photoresponsive memory devices. Nat Nanotech, 8, 826(2013).

    [649] Q H Wang, K Kalantar-Zadeh, A Kis et al. Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. Nat Nanotech, 7, 699(2012).

    [650] L Wang, J Jie, Z Shao et al. MoS2/Si heterojunction with vertically standing layered structure for ultrafast, high-detectivity, self-driven visible-near infrared photodetectors. Adv Funct Mater, 25, 2910(2015).

    [651] C Zhao, T K Ng, R T ElAfandy et al. Droop-free, reliable, and high-power InGaN/GaN nanowire light-emitting diodes for monolithic metal-optoelectronics. Nano Lett, 16, 4616(2016).

    [652] L Li, Y Zhang, S Xu et al. On the hole injection for III-nitride based deep ultraviolet light-emitting diodes. Materials, 10, 1221(2017).

    [653] M Tangi, J Kuyyalil, S M Shivaprasad. Optical bandgap and near surface band bending in degenerate InN films grown by molecular beam epitaxy. J Appl Phys, 114, 153501(2013).

    [654] J Kuyyalil, M Tangi, S Shivaprasad. Effect of interfacial lattice mismatch on bulk carrier concentration and band gap of InN. J Appl Phys, 112, 083521(2012).

    [655] B Roul, M Kumar, M K Rajpalke et al. Binary group III-nitride based heterostructures: band offsets and transport properties. J Phys D, 48, 423001(2015).

    [656] A Zubair, A Nourbakhsh, J Y Hong et al. Hot electron transistor with van der Waals base-collector heterojunction and highperformance GaN emitter. Nano Lett, 17, 3089(2017).

    [657] J Liu, A Kobayashi, S Toyoda et al. Band offsets of polar and nonpolar GaN/ZnO heterostructures determined by synchrotron radiation photoemission spectroscopy. Phys Status Solidi B, 248, 956(2011).

    [658] P D C King, T D Veal, C E Kendrick et al. InN/GaN valence band offset: High-resolution X-ray photoemission spectroscopy measurements. Phys Rev B, 78, 033308(2008).

    [659] P D C King, T D Veal, P H Jefferson et al. Valence band offset of InN/AlN heterojunctions measured by X-ray photoelectron spectroscopy. Appl Phys Lett, 90, 132105(2007).

    [660] G Martin, A Botchkarev, A Rockett et al. Valence-band discontinuities of wurtzite GaN, AlN, and InN heterojunctions measured by X-ray photoemission spectroscopy. Appl Phys Lett, 68, 2541(1996).

    [661] C Mietze, M Landmann, E Rauls et al. Band offsets in cubic GaN/AlN superlattices. Phys Rev B, 83, 195301(2011).

    [662] L Sang, Q S Zhu, S Y Yang et al. Band offsets of non-polar A-plane GaN/AlN and AlN/GaN heterostructures measured by X-ray photoemission spectroscopy. Nanoscale Res Lett, 9, 470(2014).

    [663] G Zhao, H Li, L Wang et al. Measurement of semi-polar (11-22) plane AlN/GaN heterojunction band offsets by X-ray photoelectron spectroscopy. Appl Phys A, 124, 130(2018).

    [664] Z H Mahmood, A P Shah, A Kadir et al. Determination of InN- GaN heterostructure band offsets from internal photoemission measurements. Appl Phys Lett, 91, 152108(2007).

    [665] C L Wu, H M Lee, C T Kuo et al. Polarization-induced valence-band alignments at cation- and anion-polar InN/GaN heterojunctions. Appl Phys Lett, 91, 042112(2007).

    [666] C F Shih, N C Chen, P H Chang et al. Band offsets of InN/GaN interface. Jpn J Appl Phys, 44, 7892(2005).

    [667] K Wang, C Lian, N Su et al. Conduction band offset at the InN/GaN heterojunction. Appl Phys Lett, 91, 232117(2007).

    [668] K T C Shibin, G Gupta. Band alignment and Schottky behaviour of InN/GaN heterostructure grown by low-temperature low-energy nitrogen ion bombardment. RSC Adv, 4, 27308(2014).

    [669] M Akazawa, B Gao, T Hashizume et al. Measurement of valence-band offsets of InAlN/GaN heterostructures grown by metal-organic vapor phase epitaxy. J Appl Phys, 109, 013703(2011).

    [670] W Jiao, W Kong, J Li et al. Characterization of MBE-grown InAlN/GaN heterostructure valence band offsets with varying In composition. AIP Adv, 6, 035211(2016).

    [671] A J Ekpunobi, A O E Animalu. Band offsets and properties of AlGaAs/GaAs and AlGaN/GaN material systems. Superlattices Microstruct, 31, 247(2002).

    [672] H Sun, Y J Park, K H Li et al. Nearly-zero valence band and large conduction band offset at BAlN/GaN heterointerface for optical and power device application. Appl Surf Sci, 458, 949(2018).

    [673] H Sun, Y J Park, K H Li et al. Band alignment of B0.14Al0.86N/ Al0.7Ga0.3N heterojunction. Appl Phys Lett, 111, 122106(2017).

    [674] C Fares, M J Tadjer, J Woodward et al. Valence and conduction band offsets for InN and III-nitride ternary alloys on (−201) bulk β-Ga2O3. ECS J Solid State Sci Technol, 8, Q3154(2019).

    [675] IV P H Carey, F Ren, D C Hays et al. Band offsets in ITO/Ga2O3 heterostructures. Appl Surf Sci, 422, 179(2017).

    [676] C Fares, F Ren, E Lambers et al. Valence and conduction band offsets for sputtered AZO and ITO on (010) (Al0.14Ga0.86)2O3. Semicond Sci Technol, 34, 025006(2019).

    [677] C Fares, F Ren, E Lambers et al. Valence- and conduction-band offsets for atomiclayer-deposited Al2O3 on (010) (Al0.14Ga0.86)2O3. J Electron Mater, 48, 1568(2019).

    [678] J M Liu, X L Liu, X Q Xu et al. Measurement of w-InN/h-BN heterojunction band offsets by X-ray photoemission spectroscopy. Nanoscale Res Lett, 5, 1340(2010).

    [679] Z H Zhang, Y Zhang, W Bi et al. On the internal quantum efficiency for InGaN/GaN light-emitting diodes grown on insulating substrates. Phys Status Solidi A, 213, 3078(2016).

    [680] S Karpov. ABC-model for interpretation of internal quantum efficiency and its droop in III-nitride LEDs: a review. Opt Quantum Electron, 47, 1293(2015).

    [681] M W Bayerl, M S Brandt, T Graf et al. g values of effective mass donors in AlxGa1–xN alloys. Phys Rev B, 63, 165204(2001).

    [682] S A McGill, K Cao, W B Fowler et al. Bound-polaron model of effective-mass binding energies in GaN. Phys Rev B, 57, 8951(1998).

    [683] J S Im, A Moritz, F Steuber et al. Radiative carrier lifetime, momentum matrix element, and hole effective mass in GaN. Appl Phys Lett, 70, 631(1997).

    [684] H Hirayama, Y Tsukada, T Maeda et al. Marked enhancement in the efficiency of deep-ultraviolet AlGaN light-emitting diodes by using a multiquantum-barrier electron blocking layer. Appl Phys Express, 3, 031002(2010).

    [685] H Hirayama. Quaternary InAlGaN-based high-efficiency ultraviolet light-emitting diodes. J Appl Phys, 97, 091101(2005).

    [686] J Müβener, P Teubert et al. Probing the internal electric field in GaN/AlGaN nanowire heterostructures. Nano Lett, 14, 5118(2014).

    [687] D A B Miller, D S Chemla, T C Damen et al. Band-edge electroabsorption in quantum well structures: The quantum-confined Stark effect. Phys Rev Lett, 53, 2173(1984).

    [688] S D Carnevale, T F Kent, P J Phillips et al. Polarization-induced pn diodes in wide-bandgap nanowires with ultraviolet electroluminescence. Nano Lett, 12, 915(2012).

    [689] D Jena, S Heikman, D Green et al. Realization of wide electron slabs by polarization bulk doping in graded III–V nitride semiconductor alloys. Appl Phys Lett, 81, 4395(2002).

    [690] D S Green, E Haus, F Wu et al. Polarity control during molecular beam epitaxy growth of Mg-doped GaN. J Vac Sci Technol B, 21, 1804(2003).

    [691] Y K Kuo, Y H Shih, M C Tsai et al. Improvement in electron overflow of near-ultraviolet InGaN LEDs by specific design on last barrier. IEEE Photonics Technol Lett, 23, 1630(2011).

    [692] M Tangi, P Mishra, B Janjua et al. Bandgap measurements and the peculiar splitting of E2H phonon modes of InxAl1–xN nanowires grown by plasma assisted molecular beam epitaxy. J Appl Phys, 120, 045701(2016).

    [693] S Choi, F Wu, R Shivaraman et al. Observation of columnar microstructure in lattice-matched InAlN/GaN grown by plasma assisted molecular beam epitaxy. Appl Phys Lett, 100, 232102(2012).

    [694] Z H Zhang, S T Tan, Z Ju et al. On the effect of step-doped quantum barriers in InGaN/GaN light emitting diodes. J Disp Technol, 9, 226(2013).

    [695] M Kneissl, T Kolbe, C Chua et al. Advances in group III-nitride-based deep UV light-emitting diode technology. Semicond Sci Technol, 26, 014036(2010).

    [696] M Shatalov, W Sun, R Jain et al. High power AlGaN ultraviolet light emitters. Semicond Sci Technol, 29, 084007(2014).

    [697] M Katsuragawa, S Sota, M Komori et al. Thermal ionization energy of Si and Mg in AlGaN. J Cryst Growth, 189, 528(1998).

    [698] L Li, Y Miyachi, M Miyoshi et al. Enhanced emission efficiency of deep ultraviolet light-emitting AlGaN multiple quantum wells grown on an n-AlGaN underlying layer. IEEE Photonics J, 8, 1601710(2016).

    [699] Z H Zhang, Y Zhang, W Bi et al. A charge inverter for III-nitride light-emitting diodes. Appl Phys Lett, 108, 133502(2016).

    [700] J K Ho, C S Jong, C C Chiu et al. Low-resistance ohmic contacts to p-type GaN. Appl Phys Lett, 74, 1275(1999).

    [701] S W Chae, K C Kim, D H Kim et al. Highly transparent and low-resistant ZnNi/indium tin oxide Ohmic contact on p-type GaN. Appl Phys Lett, 90, 181101(2007).

    [702] H W Jang, J L Lee. Transparent Ohmic contacts of oxidized Ru and Ir on p-type GaN. J Appl Phys, 93, 5416(2003).

    [703] E F Schubert, W Grieshaber, I D Goepfert. Enhancement of deep acceptor activation in semiconductors by superlattice doping. Appl Phys Lett, 69, 3737(1996).

    [704] S Neugebauer, M Hoffmann, H Witte et al. All metalorganic chemical vapor phase epitaxy of p/n-GaN tunnel junction for blue light emitting diode applications. Appl Phys Lett, 110, 102104(2017).

    [705] Y Zhang, S Krishnamoorthy, F Akyol et al. Reflective metal/semiconductor tunnel junctions for hole injection in AlGaN UV LEDs. Appl Phys Lett, 111, 051104(2017).

    [706] S Krishnamoorthy, F Akyol, S Rajan. InGaN/GaN tunnel junctions for hole injection in GaN light emitting diodes. Appl Phys Lett, 105, 141104(2014).

    [707] Y K Kuo, J Y Chang, F M Chen et al. Numerical investigation on the carrier transport characteristics of AlGaN deep-UV light-emitting diodes. IEEE J Quantum Electron, 52, 3300105(2016).

    [708] B Cheng, S Choi, J E Northrup et al. Enhanced vertical and lateral hole transport in high aluminum-containing AlGaN for deep ultraviolet light emitters. Appl Phys Lett, 102, 231106(2013).

    [709] J K Kim, E L Waldron, Y L Li et al. P-type conductivity in bulk AlxGa1–xN and AlxGa1–xN/AlyGa1–yN superlattices with average Al mole fraction > 20%. Appl Phys Lett, 84, 3310(2004).

    [710] T G Zhu, J C Denyszyn, U Chowdhury et al. AlGaN-GaN UV light-emitting diodes grown on SiC by metal-organic chemical vapor deposition. IEEE J Sel Top Quantum Electron, 8, 298(2002).

    [711] L Zhang, K Ding, J C Yan et al. Three-dimensional hole gas induced by polarization in (0001)-oriented metal-face III-nitride structure. Appl Phys Lett, 97, 062103(2010).

    [712] Z H Zhang, L Li, Y Zhang et al. On the electric-field reservoir for III-nitride based deep ultraviolet light-emitting diodes. Opt Express, 25, 16550(2017).

    [713] S R Jeon, Y H Song, H J Jang et al. Lateral current spreading in GaN-based light-emitting diodes utilizing tunnel contact junctions. Appl Phys Lett, 78, 3265(2001).

    [714] F Mehnke, C Kuhn, M Guttmann et al. Efficient charge carrier injection into sub-250 nm AlGaN multiple quantum well light emitting diodes. Appl Phys Lett, 105, 051113(2014).

    [715] C L Tsai, H H Liu, J W Chen et al. Improving the light output power of DUV-LED by introducing an intrinsic last quantum barrier interlayer on the high-quality AlN template. Solid-State Electron, 138, 84(2017).

    [716] Z H Zhang, S W Huang Chen, Y Zhang et al. Hole transport manipulation to improve the hole injection for deep ultraviolet light-emitting diodes. ACS Photonics, 4, 1846(2017).

    [717] M C Tsai, S H Yen, Y K Kuo. Deep-ultraviolet light-emitting diodes with gradually increased barrier thicknesses from n-layers to p-layers. Appl Phys Lett, 98, 111114(2011).

    [718] T Kolbe, T Sembdner, A Knauer et al. (In)AlGaN deep ultraviolet light emitting diodes with optimized quantum well width. Phys Status Solidi A, 207, 2198(2010).

    [719] N Norimichi, H Hirayama, T Yatabe et al. 222 nm single-peaked deep-UV LED with thin AlGaN quantum well layers. Phys Status Solidi C, 6, S459(2009).

    [720] H Hirayama, N Noguchi, T Yatabe et al. 227 nm AlGaN light-emitting diode with 0.15 mW output power realized using a thin quantum well and AlN buffer with reduced threading dislocation density. Appl Phys Express, 1, 051101(2008).

    [721] H Hirayama, T Yatabe, N Noguchi et al. 231–261 nm AlGaN deep-ultraviolet light-emitting diodes fabricated on AlN multilayer buffers grown by ammonia pulse-flow method on sapphire. Appl Phys Lett, 91, 071901(2007).

    [722] X Xiu, L Zhang, Y Li, Z Xiong et al. Application of halide vapor phase epitaxy for the growth of ultra-wide band gap Ga2O3. J Semicond, 40, 011805(2019).

    [723]

    [724] A Sedhain, J Y Lin, H X Jiang. Nature of optical transitions involving cation vacancies and complexes in AlN and AlGaN. Appl Phys Lett, 100, 221107(2012).

    [725] M Bickermann, B M Epelbaum, O Filip et al. Deep-UV transparent bulk single-crystalline AlN substrates. Phys Status Solidi C, 7, 1743(2010).

    [726] R T Bondokov, S G Mueller, K E Morgan et al. Large-area AlN substrates for electronic applications: An industrial perspective. J Cryst Growth, 310, 4020(2008).

    [727] M Bickermann, B M Epelbaum, A Winnacker. PVT growth of bulk AlN crystals with low oxygen contamination. Phys Status Solidi C, 1993(1993).

    [728] G A Slack, L J Schowalter, D Morelli et al. Some effects of oxygen impurities on AlN and GaN. J Cryst Growth, 246, 287(2002).

    [729] C R Haughn, G Rupper, T Wunderer et al. Highly radiative nature of ultra-thin c-plane Al-rich AlGaN/AlN quantum wells for deep ultraviolet emitters. Appl Phys Lett, 114, 102101(2019).

    [730] C Chu, K Tian, Y Zhang et al. Progress in external quantum efficiency for III-nitride based deep ultraviolet light-emitting diodes. Phys Status Solidi A, 216, 1800815(2019).

    [731] I Bryan, Z Bryan, S Washiyama et al. Doping and compensation in Al-rich AlGaN grown on single crystal AlN and sapphire by MOCVD. Appl Phys Lett, 112, 062102(2018).

    [732]

    [733] I Bryan, Z Bryan, S Mita et al. Surface kinetics in AlN growth: A universal model for the control of surface morphology in III-nitrides. J Cryst Growth, 438, 81(2016).

    [734] C Hartmann, J Wollweber, A Dittmar et al. Preparation of bulk AlN seeds by spontaneous nucleation of freestanding crystals. Jpn J Appl Phys, 52, 08JA06(2013).

    [735] R R Sumathi. Bulk AlN single crystal growth on foreign substrate and preparation of free-standing native seeds. Cryst Eng Comm, 15, 2232(2013).

    [736] E Mokhov, I Izmaylova, O Kazarova et al. Specific features of sublimation growth of bulk AlN crystals on SiC wafers. Phys Status Solidi C, 10, 445(2013).

    [737] S H Park, J I Shim. Carrier density dependence of polarization switching characteristics of light emission in deep-ultraviolet AlGaN/AlN quantum well structures. Appl Phys Lett, 102, 221109(2013).

    [738] R Dalmau, B Moody, J Xie et al. Characterization of dislocation arrays in AlN single crystals grown by PVT. Phys Status Solidi A, 208, 1545(2011).

    [739] Z Herro, D Zhuang, R Schlesser et al. Growth of AlN single crystalline boules. J Cryst Growth, 312, 2519(2010).

    [740] T Kinoshita, T Obata, T Nagashima et al. Performance and reliability of deep-ultraviolet light-emitting diodes fabricated on AlN substrates prepared by hydride vapor phase epitaxy. Appl Phys Express, 6, 092103(2013).

    [741] T Kinoshita, K Hironaka, T Obata et al. Deep-ultraviolet light-emitting diodes fabricated on AlN substrates prepared by hydride vapor phase epitaxy. Appl Phys Express, 5, 122101(2012).

    [742] J R Grandusky, J Chen, S R Gibb et al. 270 nm pseudomorphic ultraviolet light-emitting diodes with over 60 mW continuous wave output power. Appl Phys Express, 6, 032101(2013).

    [743] Y An, Y Sun, M Zhang et al. Tuning the electronic structures and transport properties of zigzag blue phosphorene nanoribbons. IEEE Trans Electron Devices, 65, 4646(2018).

    [744] H Liu, A T Neal, Z Zhu, Z Luo et al. Phosphorene: An unexplored 2D semiconductor with a high hole mobility. ACS Nano, 8, 4033(2014).

    [745] M Zhang, Y An, Y Sun et al. The electronic transport properties of zigzag phosphorene-like MX (M = Ge/Sn, X = S/Se) nanostructures. Phys Chem Chem Phys, 19, 17210(2017).

    [746] F Li, X Liu, Y Wang et al. Germanium monosulfide monolayer: a novel two-dimensional semiconductor with a high carrier mobility. J Mater Chem C, 4, 2155(2016).

    [747] R Dagan, Y Vaknin, A Henning et al. Two-dimensional charge carrier distribution in MoS2 monolayer and multilayers. Appl Phys Lett, 114, 101602(2019).

    [748] X Zhou, X Hu, J Yu et al. 2D layered material-based van der Waals heterostructures for optoelectronics. Adv Funct Mater, 28, 1706587(2018).

    [749] M Nayeri, M Fathipour. A numerical analysis of electronic and optical properties of the zigzag MoS2 nanoribbon under uniaxial strain. IEEE Trans Electron Devices, 65, 1988(2018).

    [750] Z Q Fan, X W Jiang, J W Luo et al. In-plane Schottky-barrier field-effect transistors based on 1T/2H heterojunctions of transition-metal dichalcogenides. Phys Rev B, 96, 165402(2017).

    [751] Y An, M Zhang, D Wu et al. The electronic transport properties of transition-metal dichalcogenide lateral heterojunctions. J Mater Chem C, 4, 10962(2016).

    [752] R Cheng, D Li, H Zhou et al. Electroluminescence and photocurrent generation from atomically sharp WSe2/MoS2 heterojunction p-n diodes. Nano Lett, 14, 5590(2014).

    [753] J Zhao, K Cheng, N Han et al. Growth control, interface behavior, band alignment, and potential device applications of 2D lateral heterostructures. Wiley Interdiscip Rev Comput Mol Sci, 8, e1353(2018).

    [754] F H L Koppens, T Mueller, P Avouris et al. Photodetectors based on graphene, other two-dimensional materials and hybrid systems. Nat Nanotechnol, 9, 780(2014).

    [755] X Zhu, S Lei, S H Tsai et al. A study of vertical transport through graphene toward control of quantum tunneling. Nano Lett, 18, 682(2018).

    [756] G A Asres, T Järvinen, G S Lorite. High photoresponse of individual WS2 nanowire-nanoflake hybrid materials. Appl Phys Lett, 112, 233103(2018).

    [757] D Chu, Y H Lee, E K Kim. Selective control of electron and hole tunneling in 2D assembly. Sci Adv, 3, e1602726(2017).

    [758] T Yamaguchi, R Moriya, Y Inoue et al. Tunneling transport in a few monolayer-thick WS2/graphene heterojunction. Appl Phys Lett, 105, 223109(2014).

    [759] F Xia, H Wang, D Xiao et al. Two-dimensional material nanophotonics. Nat Photonics, 8, 899(2014).

    [760] S Kim, S Oh, J Kim. Ultrahigh deep-UV sensitivity in graphene-gated β-Ga2O3 phototransistors. ACS Photonics, 6, 1026(2019).

    [761] M Schubert, A Mock, R Korlacki et al. Longitudinal phonon plasmon mode coupling in β-Ga2O3. Appl Phys Lett, 114, 102102(2019).

    [762] A Y Polyakov, N B Smirnov, I V Shchemerov et al. Electrical properties of bulk semi-insulating β-Ga2O3(Fe). Appl Phys Lett, 113, 142102(2018).

    [763] Z Hu, K Nomoto, W Li et al. Breakdown mechanism in 1 kA/cm2 and 960 V E-mode β-Ga2O3 vertical transistors. Appl Phys Lett, 113, 122103(2018).

    [764] C Joishi, Z Xia, J McGlone et al. Effect of buffer iron doping on delta-doped β-Ga2O3 metal semiconductor field effect transistors. Appl Phys Lett, 113, 123501(2018).

    [765] A T Neal, S Mou, S Rafique et al. Donors and deep acceptors in β-Ga2O3. Appl Phys Lett, 113, 062101(2018).

    [766] M H Wong, C H Lin, A Kuramata et al. Acceptor doping of β-Ga2O3 by Mg and N ion implantations. Appl Phys Lett, 113, 102103(2018).

    [767] J Yang, F Ren, M Tadjer et al. Ga2O3 Schottky rectifiers with 1 ampere forward current, 650 V reverse breakdown and 26.5 MW·cm-2 figure-of-merit. AIP Adv, 8, 055026(2018).

    [768] S U Lee, J Jeong. Short time helium annealing for solution-processed amorphous indium-gallium-zinc-oxide thin film transistors. AIP Adv, 8, 085206(2018).

    [769] A Y Polyakov, N B Smirnov, I V Shchemerov et al. Defects responsible for charge carrier removal and correlation with deep level introduction in irradiated β-Ga2O3. Appl Phys Lett, 113, 092102(2018).

    [770] J T Gibbon, L Jones, J W Roberts et al. Band alignments at Ga2O3 heterojunction interfaces with Si and Ge. AIP Adv, 8, 065011(2018).

    [771] S Zhang, X Lian, Y Ma et al. Growth and characterization of 2-inch high quality β-Ga2O3 single crystals grown by EFG method. J Semicond, 39, 083003(2018).

    [772] A Y Polyakov, N B Smirnov, I V Shchemerov et al. Compensation and persistent photocapacitance in homoepitaxial Sn-doped β-Ga2O3. J Appl Phys, 123, 115702(2018).

    [773] K Zhang, Q Feng, L Huang et al. (InxGa1–x)2O3 photodetectors fabricated on sapphire at different temperatures by PLD. IEEE Photon J, 10, 6802508(2018).

    [774] Q Feng, Z Hu, Z Feng et al. Research on the growth of β-(AlGa)2O3 film and the analysis of electrical characteristics of Ni/Au Schottky contact using Tung’s model. Superlattices Microstruct, 120, 441-447(2018).

    [775] Q Feng, Z Feng, Z Hu et al. Temperature dependent electrical properties of pulse laser deposited Au/Ni/β-(AlGa)2O3 Schottky diode. Appl Phys Lett, 112, 072103(2018).

    [776] Y Zhang, C Joishi, Z Xia et al. Demonstration of β-(AlxGa1–x)2O3/ Ga2O3 double heterostructure field effect transistors. Appl Phys Lett, 112, 233503(2018).

    [777] Y Zhang, A Neal, Z Xia et al. Demonstration of high mobility and quantum transport in modulationdoped β-(AlxGa1–x)2O3/Ga2O3 heterostructures. Appl Phys Lett, 112, 173502(2018).

    [778] X Chen, Y Xu, D Zhou et al. Solar-blind photodetector with high avalanche gains and bias-tunable detecting functionality based on metastable phase α-Ga2O3/ZnO isotype heterostructures. ACS Appl Mater Interfaces, 9, 36997-37005(2017).

    [779] T Oshima, T Okuno, S Fujita. Ga2O3 thin film growth on c-plane sapphire substrates by molecular beam epitaxy for deep-ultraviolet photodetectors. Jpn J Appl Phys, 46, 7217(2007).

    [780] L X Qian, Z H Wu, Y Y Zhang et al. Ultrahigh-responsivity, rapid-recovery, solar-blind photodetector based on highly nonstoichiometric amorphous gallium oxide. ACS Photonics, 4, 2203(2017).

    [781] M Orita, H Ohta, M Hirano et al. Deep-ultraviolet transparent conductive β-Ga2O3 thin films. Appl Phys Lett, 77, 4166(2000).

    [782] A S Pratiyush, S Krishnamoorthy, S V Solanke et al. High responsivity in molecular beam epitaxy grown β-Ga2O3 metal semiconductor metal solar blind deep-UV photodetector. Appl Phys Lett, 110, 221107(2017).

    [783] D Guo, Z Wu, P Li et al. Fabrication of β-Ga2O3 thin films and solar-blind photodetectors by laser MBE technology. Opt Mater Express, 4, 1067(2014).

    [784] A Moudgil, V Dhyani, S Das. High speed efficient ultraviolet photodetector based on 500 nm width multiple WO3 nanowires. Appl Phys Lett, 113, 101101(2018).

    [785] F Khan, W Khan, J H Kim et al. Oxygen desorption kinetics of ZnO nanorod-gated AlGaN/GaN HEMT-based UV photodetectors. AIP Adv, 8, 075225(2018).

    Nasir Alfaraj, Jung-Wook Min, Chun Hong Kang, Abdullah A. Alatawi, Davide Priante, Ram Chandra Subedi, Malleswararao Tangi, Tien Khee Ng, Boon S. Ooi. Deep-ultraviolet integrated photonic and optoelectronic devices: A prospect of the hybridization of group III–nitrides, III–oxides, and two-dimensional materials[J]. Journal of Semiconductors, 2019, 40(12): 121801
    Download Citation