• Journal of Semiconductors
  • Vol. 40, Issue 12, 121801 (2019)
Nasir Alfaraj, Jung-Wook Min, Chun Hong Kang, Abdullah A. Alatawi, Davide Priante, Ram Chandra Subedi, Malleswararao Tangi, Tien Khee Ng, and Boon S. Ooi
Author Affiliations
  • Photonics Laboratory, Computer, Electrical and Mathematical Sciences and Engineering Division (CEMSE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia
  • show less
    DOI: 10.1088/1674-4926/40/12/121801 Cite this Article
    Nasir Alfaraj, Jung-Wook Min, Chun Hong Kang, Abdullah A. Alatawi, Davide Priante, Ram Chandra Subedi, Malleswararao Tangi, Tien Khee Ng, Boon S. Ooi. Deep-ultraviolet integrated photonic and optoelectronic devices: A prospect of the hybridization of group III–nitrides, III–oxides, and two-dimensional materials[J]. Journal of Semiconductors, 2019, 40(12): 121801 Copy Citation Text show less

    Abstract

    Progress in the design and fabrication of ultraviolet and deep-ultraviolet group III–nitride optoelectronic devices, based on aluminum gallium nitride and boron nitride and their alloys, and the heterogeneous integration with two-dimensional and oxide-based materials is reviewed. We emphasize wide-bandgap nitride compound semiconductors (i.e., (B, Al, Ga)N) as the deep-ultraviolet materials of interest, and two-dimensional materials, namely graphene, two-dimensional boron nitride, and two-dimensional transition metal dichalcogenides, along with gallium oxide, as the hybrid integrated materials. We examine their crystallographic properties and elaborate on the challenges that hinder the realization of efficient and reliable ultraviolet and deep-ultraviolet devices. In this article we provide an overview of aluminum nitride, sapphire, and gallium oxide as platforms for deep-ultraviolet optoelectronic devices, in which we criticize the status of sapphire as a platform for efficient deep-ultraviolet devices and detail advancements in device growth and fabrication on aluminum nitride and gallium oxide substrates. A critical review of the current status of deep-ultraviolet light emission and detection materials and devices is provided.
    $ p(T) = N_ {{\rm A}}{\rm{e}}^{-E^{ \rm {Mg}}_ {{{\rm A}}}/kT}, $(1)

    View in Article

    $ a_{{\rm {cubic}}} = \sqrt[3]{\sqrt{3} a_ {{\rm w}}^2 c_ {{\rm w}}}, $ (2)

    View in Article

    $\varepsilon_{xx} = \varepsilon_{yy} = \frac{a-a_0}{a_0}, \quad \varepsilon_{zz} = -2\frac{C_{13}}{C_{33}}\varepsilon_{xx}, $(3)

    View in Article

    $ P_{ \rm{PE}} = \pm 2 \varepsilon_{xx}\left(\varepsilon_{31}-\varepsilon_{31}\frac{C_{13}}{C_{33}}\right), $(4)

    View in Article

    $ \varepsilon_{ {{\rm w}}}F_{ {{\rm w}}} + P_{ {{\rm w}}} = \varepsilon_{ {\rm b}} F_ {\rm b} + P_ {\rm b}, $(5)

    View in Article

    $ F_ {{\rm w}} = \frac{(P_ {\rm b}-P_ {{\rm w}})L_ {\rm b}}{\varepsilon_{\rm b}L_ {{\rm w}} + \varepsilon_ {{\rm w}}L_ {\rm b}}, \quad F_ {\rm b} = \frac{(P_ {{\rm w}}-P_ {\rm b})L_ {{\rm w}}}{\varepsilon_{\rm b}L_ {{\rm w}} + \varepsilon_ {{\rm w}}L_ {\rm b}}, $(6)

    View in Article

    $ b_{\rm{edge} }= \frac{1}{3}\langle 11\bar{2}0\rangle, \quad b_ {\rm{mixed}} = \frac{1}{3}\langle 11\bar{2}3\rangle, \quad b_ {\rm{screw}} = \frac{1}{3}\langle 0001 \rangle. $(7)

    View in Article

    $ {{\rm{IQE}}} = \frac{ \rm{rate of photon generation}}{ \rm{rate of carrier injection into active region}}. $(8)

    View in Article

    $ {\rm{IQE}} = \frac{I_ {{\rm r}}}{I_ {\rm{tot}}} = \frac{I_ {{\rm r}}}{I_ {{\rm r}}+I_ {\rm{nr}}}, $(9)

    View in Article

    $ I_ {\rm{tot}} = I_ {{\rm r}} + I_ {\rm{SRH}} + I_ {\rm{Auger}} + I_ {\rm{leakage}}. $(10)

    View in Article

    $ I_ {\rm{QW}} = I_ {{\rm r}} + I_ {\rm{SRH}} + I_ {\rm{Auger}} = qV_{ {\rm{QW}}}(AN + BN^2 + CN^3), $(11)

    View in Article

    $ I_ {\rm{leakage}} = \alpha(I_ {\rm{QW}})^2. $(12)

    View in Article

    $ {\rm{IQE}} = \frac{\eta_ {\rm{inj}}+BN^2}{AN + BN^2 + CN^3}, $(13)

    View in Article

    $ {{\rm {EQE}}} = \frac{I_{ {\rm PC}}}{P_{ {\rm {IL}}}} \frac{hc}{q\lambda} = {R} \frac{hc}{q\lambda}, $(14)

    View in Article

    Nasir Alfaraj, Jung-Wook Min, Chun Hong Kang, Abdullah A. Alatawi, Davide Priante, Ram Chandra Subedi, Malleswararao Tangi, Tien Khee Ng, Boon S. Ooi. Deep-ultraviolet integrated photonic and optoelectronic devices: A prospect of the hybridization of group III–nitrides, III–oxides, and two-dimensional materials[J]. Journal of Semiconductors, 2019, 40(12): 121801
    Download Citation