• Journal of Semiconductors
  • Vol. 41, Issue 7, 072905 (2020)
Xinyu Wu1、2, Weihua Han1、2, Xiaosong Zhao1、2, Yangyan Guo1、2, Xiaodi Zhang1、2, and Fuhua Yang1、2、3
Author Affiliations
  • 1School of Microelectronics, University of Chinese Academy of Sciences, Beijing 100049, China
  • 2Engineering Research Center for Semiconductor Integrated Technology, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China
  • 3State Key Laboratory for Superlattices and Microstructures, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China
  • show less
    DOI: 10.1088/1674-4926/41/7/072905 Cite this Article
    Xinyu Wu, Weihua Han, Xiaosong Zhao, Yangyan Guo, Xiaodi Zhang, Fuhua Yang. Gate-regulated transition temperatures for electron hopping behaviours in silicon junctionless nanowire transistors[J]. Journal of Semiconductors, 2020, 41(7): 072905 Copy Citation Text show less
    References

    [1] P M Koenraad, M E Flatté. Single dopants in semiconductors. Nat Mater, 10, 91(2011).

    [2] G P Lansbergen, R Rahman, C J Wellard et al. Gate-induced quantum-confinement transition of a single dopant atom in a silicon FinFET. Nat Phys, 4, 656(2008).

    [3] B Fresch, J Bocquel, S Rogge et al. A probabilistic finite state logic machine realized experimentally on a single dopant atom. Nano Lett, 17, 1846(2017).

    [4] L C L Hollenberg, A Dzurak, C J Wellard et al. Charged-based quantum computing using single donors in semiconductors. Phys Rev B, 69, 113301(2004).

    [5] T D Ladd, F Jelezko, R Laflamme et al. Quantum computers. Nature, 464, 45(2010).

    [6] M Fuechsle, J A Miwa, S Mahapatra et al. A single-atom transistor. Nat Nanotechnol, 7, 242(2012).

    [7] E Prati, M Hori, F Guagliardo et al. Anderson–Mott transition in arrays of a few dopant atoms in a silicon transistor. Nat Nanotechnol, 7, 443(2012).

    [8] S A Dagesyan, V V Shorokhov, D E Presnov et al. Sequential reduction of the silicon single-electron transistor structure to atomic scale. Nanotechnology, 28, 225304(2017).

    [9] H Ryu, S Lee, M Fuechsle et al. A tight-binding study of single-atom transistors. Small, 3, 374(2015).

    [10] M Tabe, D Moraru, M Ligowski et al. Single-electron transport through single dopants in a dopant-rich environment. Phys Rev Lett, 105, 016803(2010).

    [11] Y Li, S Yu, J Hwang et al. discrete dopant fluctuations in 20-nm/15-nm-gate planar CMOS. IEEE Trans Electron Devices, 55, 1449(2008).

    [12] N D Akhavan, I Ferain, R Yu et al. Influence of discrete dopant on quantum transport in silicon nanowire transistors. Solid-State Electron, 70, 92(2012).

    [13] J P Colinge, C W Lee, A Afzalian et al. Nanowire transistors without junctions. Nat Nanotechnol, 5, 225(2010).

    [14] A Ueda, M Luisier, N Sano. Enhanced impurity-limited mobility in ultra-scaled Si nanowire junctionless field-effect transistors. Appl Phys Lett, 107, 253501(2015).

    [15] W Uddin, Y M Georgiev, S Maity et al. Dopant induced single electron tunneling within the sub-bands of single silicon NW tri-gate junctionless n-MOSFET. J Phys D, 50, 365104(2017).

    [16]

    [17]

    [18] A L Efros, B I Shklovskii. Coulomb gap and low-temperature conductivity of disordered systems. J Phy C, 8, 49(1975).

    [19] H Wang, W Han, X Li et al. Low-temperature study of array of dopant atoms on transport behaviors in silicon junctionless nanowire transistor. J Appl Phys, 116, 124505(2014).

    [20] Y Y Guo, W H Han, X S Zhao et al. Observation of hopping transitions for delocalized electrons by temperature-dependent conductance in silicon junctionless nanowire transistors. Chin Phys B, 28, 107303(2019).

    [21] H Wang, W Han, L Ma et al. Current-voltage spectroscopy of dopant-induced quantum-dots in heavily n-doped junctionless nanowire transistors. Appl Phys Lett, 104, 133509(2014).

    [22] H Büch, M Fuechsle, W Baker et al. Quantum dot spectroscopy using a single phosphorus donor. Phys Rev B, 92, 235309(2015).

    [23] G C Tettamanzi, S J Hile, M G House et al. Probing the quantum states of a single atom transistor at microwave frequencies. ACS Nano, 11, 2444(2016).

    [24] K Tyszka, D Moraru, A Samanta et al. Comparative study of donor-induced quantum dots in Si nano-channels by singleelectron transport characterization and Kelvin probe force microscopy. J Appl Phys, 117, 244307(2015).

    [25] D Moraru, A Samanta, K Tyszka et al. Tunneling in systems of coupled dopant-atoms in silicon nano-devices. Nanoscale Res Lett, 10, 372(2015).

    Xinyu Wu, Weihua Han, Xiaosong Zhao, Yangyan Guo, Xiaodi Zhang, Fuhua Yang. Gate-regulated transition temperatures for electron hopping behaviours in silicon junctionless nanowire transistors[J]. Journal of Semiconductors, 2020, 41(7): 072905
    Download Citation