• Laser & Optoelectronics Progress
  • Vol. 58, Issue 15, 1516025 (2021)
Dan Wang1, Xiaodan Wang1、*, Hai Ma1, Huajun Chen1, Hongmin Mao1, and Xionghui Zeng2
Author Affiliations
  • 1Jiangsu Key Laboratory of Micro and Nano Heat Fluid Flow Technology and Energy Application, School of Physical Science and Technology, Suzhou University of Science and Technology, Suzhou, Jiangsu 215009, China
  • 2Suzhou Institute of Nanotechnology and Nano-Bionics, Chinese Academy of Sciences, Suzhou, Jiangsu 215123, China
  • show less
    DOI: 10.3788/LOP202158.1516025 Cite this Article Set citation alerts
    Dan Wang, Xiaodan Wang, Hai Ma, Huajun Chen, Hongmin Mao, Xionghui Zeng. Progress of Doping in Ga2O3 Materials[J]. Laser & Optoelectronics Progress, 2021, 58(15): 1516025 Copy Citation Text show less
    References

    [1] Roy R, Hill V G, Osborn E F. Polymorphism of Ga2O3 and the system Ga2O3-H2O[J]. Journal of the American Chemical Society, 74, 719-722(1952).

    [2] Wong M H, Higashiwaki M. Vertical β-Ga₂O₃ power transistors: a review[J]. IEEE Transactions on Electron Devices, 67, 3925-3937(2020).

    [3] Xu J J, Zheng W, Huang F. Gallium oxide solar-blind ultraviolet photodetectors: a review[J]. Journal of Materials Chemistry C, 7, 8753-8770(2019).

    [4] Huso J, McCluskey M D, Yu Y C et al. Localized UV emitters on the surface of β-Ga2O3[J]. Scientific Reports, 10, 21022(2020).

    [5] Ji M, Taylor N R, Kravchenko I et al. Demonstration of large-size vertical Ga2O3 Schottky barrier diodes[J]. IEEE Transactions on Power Electronics, 36, 41-44(2020).

    [6] Li X, Wang X D, Ma H et al. Research progress on adjusting and controlling luminescence performance of GaN∶Eu3+ materials[J]. Laser & Optoelectronics Progress, 57, 210004(2020).

    [7] Shao C Y, Yu C L, Hu L L. Radiation-resistant active fibers for space applications[J]. Chinese Journal of Lasers, 47, 0500014(2020).

    [8] Wang Z, Xie W Q, Dou A J et al. 2 μm fluorescence properties of Tm3+ and Ho3+ ions doped tellurite-germanate glass[J]. Chinese Journal of Lasers, 47, 1003004(2020).

    [9] Chen Z W, Guo D Y, Li P G et al. Low driven voltage red LEDs using Eu-doped Ga2O3 films on GaAs[J]. Applied Physics Express, 12, 061009(2019).

    [10] Guo D, Guo Q, Chen Z et al. Review of Ga2O3-based optoelectronic devices[J]. Materials Today Physics, 11, 100157(2019).

    [11] Chen Z W, Wang X, Zhang F B et al. Observation of low voltage driven green emission from erbium doped Ga2O3 light-emitting devices[J]. Applied Physics Letters, 109, 022107(2016).

    [12] Pearton S J, Yang J C, Cary P H et al. A review of Ga2O3 materials, processing, and devices[J]. Applied Physics Reviews, 5, 011301(2018).

    [13] Peelaers H, van de Walle C G. Doping of Ga2O3 with transition metals[J]. Physical Review B, 94, 195203(2016).

    [14] Shi R P, Huang X D, Sin J K O et al. Nb-doped Ga2O3 as charge-trapping layer for nonvolatile memory applications[J]. Microelectronics Reliability, 65, 64-68(2016).

    [15] Zhou W, Xia C T, Sai Q L et al. Controlling n-type conductivity of β-Ga2O3 by Nb doping[J]. Applied Physics Letters, 111, 242103(2017).

    [16] Chikoidze E, Fellous A, Perez-Tomas A et al. P-type β-gallium oxide: a new perspective for power and optoelectronic devices[J]. Materials Today Physics, 3, 118-126(2017).

    [17] Chikoidze E, Sartel C, Mohamed H et al. Enhancing the intrinsic p-type conductivity of the ultra-wide bandgap Ga2O3 semiconductor[J]. Journal of Materials Chemistry C, 7, 10231-10239(2019).

    [18] Lyons J L. A survey of acceptor dopants for β-Ga2O3[J]. Semiconductor Science and Technology, 33, 05LT02(2018).

    [19] Chen Z W, Saito K, Tanaka T et al. Low temperature growth of europium doped Ga2O3 luminescent films[J]. Journal of Crystal Growth, 430, 28-33(2015).

    [20] Higashiwaki M, Fujita S[M]. Gallium oxide(2020).

    [21] Hu D Q, Zhuang S W, Ma Z Z et al. Study on the optical properties of β-Ga2O3 films grown by MOCVD[J]. Journal of Materials Science: Materials in Electronics, 28, 10997-11001(2017).

    [22] Asel T J, Steinbrunner E, Hendricks J et al. Reduction of unintentional Si doping in β-Ga2O3 grown via plasma-assisted molecular beam epitaxy[J]. Journal of Vacuum Science & Technology A, 38, 043403(2020).

    [23] Kuramata A, Koshi K, Watanabe S et al. High-quality β-Ga2O3 single crystals grown by edge-defined film-fed growth[J]. Japanese Journal of Applied Physics, 55, 1202A2(2016).

    [24] Zhang J G, Li B, Xia C T et al. Growth and spectral characterization of β-Ga2O3 single crystals[J]. Journal of Physics and Chemistry of Solids, 67, 2448-2451(2006).

    [25] Galazka Z, Uecker R, Irmscher K et al. Czochralski growth and characterization of β-Ga2O3 single crystals[J]. Crystal Research and Technology, 45, 1229-1236(2010).

    [26] Tadjer M J, Lyons J L, Nepal N et al. Editors’ choice: review: theory and characterization of doping and defects in β-Ga2O3[J]. ECS Journal of Solid State Science and Technology, 8, Q3187-Q3194(2019).

    [27] Peres M, Lorenz K, Alves E et al. Doping β-Ga2O3 with europium: influence of the implantation and annealing temperature[J]. Journal of Physics D: Applied Physics, 50, 325101(2017).

    [28] Nogales E, Méndez B, Piqueras J et al. Europium doped gallium oxide nanostructures for room temperature luminescent photonic devices[J]. Nanotechnology, 20, 115201(2009).

    [29] Chen Z W, Wang X, Noda S et al. Effects of dopant contents on structural, morphological and optical properties of Er doped Ga2O3 films[J]. Superlattices and Microstructures, 90, 207-214(2016).

    [30] Wu Z P, Bai G X, Hu Q R et al. Effects of dopant concentration on structural and near-infrared luminescence of Nd3+-doped beta-Ga2O3 thin films[J]. Applied Physics Letters, 106, 171910(2015).

    [31] Nogales E, García J A, Méndez B et al. Visible and infrared luminescence study of Er doped β-Ga2O3 and Er3Ga5O12[J]. Journal of Physics D: Applied Physics, 41, 065406(2008).

    [32] Pang M L, Shen W Y, Lin J. Enhanced photoluminescence of Ga2O3:Dy3+ phosphor films by Li+ doping[J]. Journal of Applied Physics, 97, 033511(2005).

    [33] Hajnal Z, Miró J, Kiss G et al. Role of oxygen vacancy defect states in the n-type conduction of β-Ga2O3[J]. Journal of Applied Physics, 86, 3792-3796(1999).

    [34] Fan M M, Lu Y J, Xu K L et al. Growth and characterization of Sn-doped β-Ga2O3 thin films by chemical vapor deposition using solid powder precursors toward solar-blind ultraviolet photodetection[J]. Applied Surface Science, 509, 144867(2020).

    [35] Atilgan A, Yildiz A, Harmanci U et al. β-Ga2O3 nanoflakes/p-Si heterojunction self-powered photodiodes[J]. Materials Today Communications, 24, 101105(2020).

    [36] Moser N, McCandless J, Crespo A et al. Ge-doped β-Ga2O3 MOSFETs[J]. IEEE Electron Device Letters, 38, 775-778(2017).

    [37] Neal A T, Mou S, Rafique S et al. Donors and deep acceptors in β-Ga2O3[J]. Applied Physics Letters, 113, 062101(2018).

    [38] Baldini M, Albrecht M, Fiedler A et al. Editors’ choice: Si- and Sn-doped homoepitaxial β-Ga2O3 layers grown by MOVPE on (010)-oriented substrates[J]. ECS Journal of Solid State Science and Technology, 6, Q3040-Q3044(2016).

    [39] Krishnamoorthy S, Xia Z B, Bajaj S et al. Delta-doped β-gallium oxide field-effect transistor[J]. Applied Physics Express, 10, 051102(2017).

    [40] Leedy K D, Chabak K D, Vasilyev V et al. Highly conductive homoepitaxial Si-doped Ga2O3 films on (010) β-Ga2O3 by pulsed laser deposition[J]. Applied Physics Letters, 111, 012103(2017).

    [41] Mauze A, Zhang Y W, Itoh T et al. Sn doping of (010) β-Ga2O3 films grown by plasma-assisted molecular beam epitaxy[J]. Applied Physics Letters, 117, 222102(2020).

    [42] Hoshikawa K, Kobayashi T, Ohba E et al. 50 mm diameter Sn-doped (001) β-Ga2O3 crystal growth using the vertical Bridgeman technique in ambient air[J]. Journal of Crystal Growth, 546, 125778(2020).

    [43] Baldini M, Albrecht M, Fiedler A et al. Semiconducting Sn-doped β-Ga2O3 homoepitaxial layers grown by metal organic vapour-phase epitaxy[J]. Journal of Materials Science, 51, 3650-3656(2016).

    [44] Akaiwa K, Kaneko K, Ichino K et al. Conductivity control of Sn-doped α-Ga2O3 thin films grown on sapphire substrates[J]. Japanese Journal of Applied Physics, 55, 1202BA(2016).

    [45] Chen J X, Li X X, Tao J J et al. Fabrication of a Nb-doped β-Ga2O3 nanobelt field-effect transistor and its low-temperature behavior[J]. ACS Applied Materials & Interfaces, 12, 8437-8445(2020).

    [46] Cui H Y, Mohamed H F, Xia C T et al. Tuning electrical conductivity of β-Ga2O3 single crystals by Ta doping[J]. Journal of Alloys and Compounds, 788, 925-928(2019).

    [47] Wang X H, Zhang F B, Saito K et al. Electrical properties and emission mechanisms of Zn-doped β-Ga2O3 films[J]. Journal of Physics and Chemistry of Solids, 75, 1201-1204(2014).

    [48] Qian Y P, Guo D Y, Chu X L et al. Mg-doped p-type β-Ga2O3 thin film for solar-blind ultraviolet photodetector[J]. Materials Letters, 209, 558-561(2017).

    [49] Ho Q D, Frauenheim T, Deák P. Theoretical confirmation of the polaron model for the Mg acceptor in β-Ga2O3[J]. Journal of Applied Physics, 124, 145702(2018).

    [50] Su Y L, Guo D Y, Ye J H et al. Deep level acceptors of Zn-Mg divalent ions dopants in β-Ga2O3 for the difficulty to p-type conductivity[J]. Journal of Alloys and Compounds, 782, 299-303(2019).

    [51] Fujihara S, Shibata Y. Luminescence of Cr3+ ions associated with surpassing the green-emissive defect centers in β-Ga2O3[J]. Journal of Luminescence, 121, 470-474(2006).

    [52] Luchechko A, Vasyltsiv V, Kostyk L et al. The effect of Cr3+ and Mg2+ impurities on thermoluminescence and deep traps in β-Ga2O3 crystals[J]. ECS Journal of Solid State Science and Technology, 9, 045008(2020).

    [53] Wang X L, Quhe R G, Zhi Y S et al. The electronic structure and magnetic property of the Mn doped β-Ga2O3[J]. Superlattices and Microstructures, 125, 330-337(2019).

    Dan Wang, Xiaodan Wang, Hai Ma, Huajun Chen, Hongmin Mao, Xionghui Zeng. Progress of Doping in Ga2O3 Materials[J]. Laser & Optoelectronics Progress, 2021, 58(15): 1516025
    Download Citation