激光与光电子学进展

Ga₂O₃材料的掺杂研究进展

王丹1, 王晓丹1*, 马海1, 陈华军1, 毛红敏1, 曾雄辉2

¹苏州科技大学物理科学与技术学院,江苏省微纳热流技术与能源应用重点实验室,江苏 苏州 215009; ²中国科学院苏州纳米技术与纳米仿生研究所,江苏 苏州 215123

摘要 相比于第三代半导体材料碳化硅(SiC)和氮化镓(GaN),氧化镓(Ga₂O₃)具有禁带宽度更大、击穿电场更强、 吸收截止边更短、生长成本更低等优点。掺杂是一种高效优化材料物性特征的方法,可以拓宽Ga₂O₃在不同领域的 应用范围。本文对近年来Ga₂O₃材料的稀土掺杂以及其他元素的掺杂进行了综述,着重分析了稀土掺杂Ga₂O₃的发 光特性。最后,对Ga₂O₃的稀土离子掺杂和p型掺杂方向进行了展望。
 关键词 材料;半导体材料;氧化镓;离子掺杂;发光特性;电导率 中图分类号 O474 文献标志码 A doi: 10.3788/LOP202158.1516025

Progress of Doping in Ga₂O₃ Materials

Wang Dan¹, Wang Xiaodan^{1*}, Ma Hai¹, Chen Huajun¹, Mao Hongmin¹, Zeng Xionghui²

¹Jiangsu Key Laboratory of Micro and Nano Heat Fluid Flow Technology and Energy Application, School of Physical Science and Technology, Suzhou University of Science and Technology, Suzhou, Jiangsu 215009, China; ²Suzhou Institute of Nanotechnology and Nano-Bionics, Chinese Academy of Sciences, Suzhou, Jiangsu 215123, China

Abstract Compared with silicon carbide (SiC) and gallium nitride (GaN), gallium oxide (Ga_2O_3) has the advantages of larger band gap width, stronger breakdown field strength, larger absorption cutoff edge, and lower growth cost. Doping technique is an effective method of optimizating physical properties of materials, which can broaden the application of Ga_2O_3 in different fields. In this paper, the progress of rare earth and other elements doped Ga_2O_3 in recent years are reviewed and the luminescence characteristics of rare earth doped Ga_2O_3 are analyzed. Finally, the research direction of rare earth doped Ga_2O_3 and p-type Ga_2O_3 are prospected.

Key wordsmaterials; semiconductor materials; gallium oxide; ion doping; luminescence; electrical conductivityOCIS codes160. 6000; 160. 5690; 160. 6990

1 引 言

以 In₂O₃、ZnO 和 SnO₂为代表的透明导电氧化物(TCOs)已广泛用于平板显示和太阳能电池存储 等领域。Ga₂O₃作为超宽带隙半导体(~4.9 eV),对 其性质的研究已有近70年的历史^[1],近年来广泛应 用于电力电子设备、日盲探测器、传感系统^[24]等。 同时,其自身较大的击穿电场强度(~8 MV/cm), 能够满足人们未来对高温高频高功率电子器件的 新需求^[5]。Ga₂O₃材料的生长过程中不免会产生一

收稿日期: 2021-03-11; 修回日期: 2021-04-09; 录用日期: 2021-05-08

基金项目:国家自然科学基金(61974158,61306004)、江苏省自然科学基金(BK20191456)、江苏省"十三五"重点学科(20168765)、江苏省研究生科研与实践创新(KYCX19_2017)

通信作者: *xdwang0416@163.com

些缺陷,如本征缺陷氧空位(V_o)、镓空位(V_{Ga})、氧间 隙(O_i)、镓间隙(Ga_i)和非故意掺杂杂质等。通过掺 杂可以调控Ga₂O₃材料的电子结构和物理化学性 质,扩大其应用领域。寻找合适且有效的掺杂方 式,是获得具有高性能Ga₂O₃材料的关键所在。

为了制备高性能发光器件与设备,利用不同稀 土掺杂对Ga₂O₃发光性能进行调控具有重要的意 义。稀土(RE)的发光主要来源于其4*f*壳层内的电 子跃迁^[6-8],由于受到外部全充满壳层(5s²5p⁶)的有 效屏蔽,其具有色纯度高、发光谱线窄等特点。近 年来,利用稀土掺杂半导体制成的发光器件,已得 到广泛运用^[9-12]。但人们发现缺陷间存在的相互作 用,极大程度影响着 RE掺杂Ga₂O₃的发光过程。

在提高Ga₂O₃材料的导电性,获得更高的电子 浓度研究方面,研究人员对Ga₂O₃材料进行了不同 种类的n型杂质掺杂。在还原条件下制备的Ga₂O₃ 晶体,大多表现出本征n型导电特性。由于其本身 的电子迁移率较低,所以一般通过在Ga₂O₃中掺杂 Si、Ge和Sn等,来提高它的电子迁移率。最近发 现,过渡金属因其具有更高的氧化态^[13-15],也能作为 Ga₂O₃的n型掺杂剂,并且在同等掺杂浓度情况下, 相比于第四主族元素的掺杂,可以获得更高的载流 子浓度,具有很大的导电优势。

为了提高光电器件的转换效率,得到高效的p 型导电特性,制备p-n同质结是可行的途径^[16-18]。 Ga₂O₃的p型掺杂和n型掺杂处于不对等的水平,一 方面Ga₂O₃的n型掺杂相对容易获得,但另一方面有 效的p型掺杂却往往难以实现。针对Ga₂O₃造成p 型导电缺失的原因有:1)空穴的有效质量太大,不 易形成自由移动的空穴;2)一般故意掺杂的浅层受 主,大多成为了n型缺陷的补偿对象;3)V_{Ga}是目前 唯一明确的受主,但是由于其自身所处的能级较 深,无法有效地得到激活。

近年来,国内外对Ga₂O₃材料予以高度关注,并 有大量文献进行了报道,但国内对离子掺杂部分的 相关内容报道相对较少。本文基于离子掺杂研究 进展和存在的问题进行了总结和分析,以促进离子 掺杂Ga₂O₃材料的进一步发展。首先分析了稀土掺 杂Ga₂O₃的制备方法的优劣性、掺杂位置与能量传 递机制,然后综述了n型掺杂的特点以及产生p型 导电的困难,最后总结全文并对此研究方向进行了 展望。

2 Ga₂O₃材料的稀土掺杂

单掺的稀土虽然只具备各自的特征发射波长, 但离子共掺却能够实现不同波段光的发射,从而实 现材料的全光发射。下面内容简要介绍了Ga₂O₃: RE的制备方法,再深入分析了稀土Eu、Er和Nd掺 杂Ga₂O₃的晶格位置与能量传递机制,最后介绍了 RE和其他离子共掺Ga₂O₃的发光情况。

2.1 Ga₂O₃:RE的制备方法

在 Ga₂O₃薄膜生长中,主要有脉冲激光沉积 (PLD)、金属有机化学气相沉积(MOCVD)、分子束 外延(MBE)等方法。随着人们对于实际 Ga₂O₃器件 的不断追求,制备 Ga₂O₃大直径体单晶的方法应运 而生。目前,生长 Ga₂O₃单晶比较成熟的技术^[12]有 导模法(EFG)、光浮区法(FZ)、提拉法(CZ)等。 表1对以上提及的生长方法进行了简单的比较。

表1	常见的几种Ga ₂ O ₃ 制备方法	È.
----	--	----

Ga_2O_3 type	Growth method	Growth temperature /°C	Growth rate	Impurity content	Crystal quality
	PLD	500[19]	3−4 nm/min @500 ℃ ^[20]	High	
Thin film	MOCVD	650-800[21]	3–4 nm/min @700 °C ^[20]	Low	_
	MBE	650 ^[22]	3–4 nm/min @600 °C ^[20]	Low	
	EFG		$6-15 \text{ mm/h}^{[23]}$		Good
	FZ	1793 ^[10]	5-10 mm/h ^[24]	_	Medium
Single crystal	CZ		$1-2 \text{ mm/h}^{[25]}$		Good

Table 1	Several	common	methods	of	preparing	Ga ₂ O

对于Ga₂O₃:RE材料的制备,其中常见的方法 包括:先在Al₂O₃、Si或者Ga₂O₃自支撑衬底上利用 PLD、MOCVD、MBE等进行原位生长;再在一定衬 底上生长Ga₂O₃,然后通过离子注入将RE注入到 Ga₂O₃基质中,最后进行退火处理来消除部分离子 注入损伤,同时使稀土离子产生光学活化。

2.2 Ga₂O₃: RE的掺杂位置

β-Ga₂O₃包含两种数量相等的Ga原子(Ga₁、 Ga₁),Ga₁在四面体位置,由四个O原子配位;Ga₁ 在八面体位置,由六个O原子配位(图1)。稀土掺

第 58 卷 第 15 期/2021 年 8 月/激光与光电子学进展

图 1 β -Ga₂O₃结构图^[26] Fig. 1 β -Ga₂O₃ structure^[26]

杂 Ga₂O₃属于替位式掺杂,主要占据的是八面体 Ga 位置。表2 对目前稀土离子掺杂 Ga₂O₃的掺杂位置 和格位对称性进行了总结。

表 2 氧化镓中稀土离子占据的晶格位置及格位对称性 Table 2 Position and symmetry of rare earth ions in gallium oxide lattice

Rare earth	Position	Symmetry	Reference
Eu			[19, 27-28]
Er	Ga∎	O_h	[29]
Nd			[30]

2.3 Ga₂O₃:RE的能量传递机制

由于稀土离子的光学特性源于它们独特的电子结构,所以稀土离子发光的激发机制与一般的自由离子的发光激发机制有所不同。目前,研究中常见的激发路径主要为电子-空穴对。

Chen 等^[19]利用光致发光光谱(PL)研究 Eu 掺 Ga₂O₃,发现当小于禁带宽度的光子能量照射样品 后,缺陷态电子与光生空穴复合形成束缚激子,随 后束缚激子通过非辐射弛豫,将能量传递(ET)给 Eu³⁺,导致⁵D₀→⁷F₂能级跃迁,最终观察到薄膜位于 613 nm 处的最强红色发光峰;Chen 等^[29]同样利用 PL,证明 Er³⁺掺杂进入 Ga₂O₃基质后,存在和 Eu³⁺ 类似的能量传递过程,薄膜在 550 nm 处表现出的 最强发光峰,对应于 Er 离子内的⁴S_{2/3}→⁴I_{15/2}跃迁; Nogales 等^[31]发现 Er³⁺的发光峰也是通过激发氧化 物中的电子-空穴对,然后将能量传递给稀土离子 而获得的;Wu等^[30]另外验证了稀土 Nd³⁺掺 Ga₂O₃ 存在和上面类似的激发机制(图 2)。

2.4 稀土离子和其他离子共掺 Ga₂O₃的发光

Pang 等^[32]利用溶胶-凝胶(sol-gel)法制备了 Ga₂O₃:Dy³⁺,Li⁺发光薄膜(图3)。Li⁺掺杂Ga₂O₃:Dy³⁺

图 3 900 ℃退火后 Ga_{1.96}Dy_{0.04}O₃和 Ga_{1.86}Dy_{0.04}O₃:0.1 Li⁺光 谱的比较^[32]

Fig. 3 Spectra of $Ga_{1.96}Dy_{0.04}O_3$ and $Ga_{1.86}Dy_{0.04}O_3$: 0. 1 Li⁺ after 900 °C annealing^[32]

薄膜的荧光(PL)光谱与Ga₂O₃:Dy³⁺薄膜的PL谱相 似,但Li⁺、Dy³⁺共掺的发光强度最大是Ga_{1.96}Dy_{0.04}O₃ 薄膜的两倍以上。主要原因可能来自以下两个方 面:1)Li⁺离子的掺入可以提高样品的晶体质量或是 作为"润滑剂"帮助Dy³⁺离子更好地并入Ga₂O₃晶格, 从而提高了PL发光强度;2)Li⁺离子掺入Ga₂O₃晶格, Dy³⁺中增大了晶粒尺寸,导致表面粗糙,减少了发 射光的内部反射,因此显示出优越的PL发光特性。

3 Ga₂O₃材料的n型掺杂

由于Ga₂O₃内部存在一些非故意掺杂的杂质, 使其通常具有n型电导率。起初认为是O空位造成 的,但通过计算表明,V₀是具有较大电离能的深层 施主^[33],所以n型电导率大多归因于掺杂杂质。

近年来,利用掺杂来控制Ga₂O₃中电子浓度的研究屡见不鲜^[14, 34-36]。在浅施主杂质中,Si、Ge和Sn是Ga₂O₃中最常见的n型掺杂杂质。过渡金属

综 述

W、Mo、Re和Nb经过Peelaers等^[13]利用第一性原理 计算,也被证明在Ga₂O₃中有成为n型掺杂的可行 性。由于Nb的掺杂具有较低的形成能,并且能利 用光浮区法来控制Nb的掺杂浓度^[15],所以Nb是过 渡金属中n型掺杂Ga₂O₃的最佳候选元素。当杂质 进入 Ga_2O_3 基质后,Si、Ge倾向于 Ga_1 位置,Sn、Nb则更倾向于 Ga_1 位置。表3整理了一些常见的浅施 主杂质掺杂的情况,其中符号 $n_{,\mu}E_{,a}$ 分别表示掺杂 浓度、迁移率和施主能级。

表 3 常见的浅施主杂质掺杂情况 Table 3 Shallow donor impurities in Ga₂O₃

		=		
Impurity	n/cm^{-3}	$\mu / (cm^2 \cdot V^{-1} \cdot S^{-1})$	$E_{\rm d}/{ m meV}$	Reference
Si	$1.0 \times 10^{17} - 1.7 \times 10^{20}$	26-130	15-50	[22, 37-40]
Sn	$4.0\!\times\!10^{17} 1.0\!\times\!10^{20}$	10-100	7.4-60	[36-38,41-44]
Ge	$4.0\!\times\!10^{17} 1.6\!\times\!10^{18}$	97-111	17.5	[36-37]
Nb	9.5 \times 10 ¹⁶ -1.8 \times 10 ¹⁹	30-80	30-150	[15,45]
Та	3.6 \times 10 ¹⁶ -3.0 \times 10 ¹⁹	50-100	_	[46]

4 Ga₂O₃材料的p型掺杂

β-Ga₂O₃材料由于Ga和O空位的自补偿效应, 各种杂质掺杂形成深受主能级,以及掺杂的溶解度低,很难实现p型掺杂。其中Mg和Zn是常见的 Ga₂O₃受主杂质。

Wang等^[47]利用PLD制备了Zn:Ga₂O₃薄膜,经过 霍尔效应的测量发现,载流子浓度随着Zn的掺杂,增 加至 6.35×10^{12} cm⁻³,发现 Zn_{Ga}的受主能级高于价带 顶 0.26 eV,能产生 p型电导率;Qian 等^[48]通过 Mg 掺 β-Ga₂O₃发现薄膜表现出弱 p型特征;Ho 等^[49]通过理 论进一步验证了 Mg在 β-Ga₂O₃中引入了一个深受主 能级,相当于一个小的极化子,取代了附近的O位置; Su 等^[50]将 Mg、Zn 共掺杂 β-Ga₂O₃时,推测 Zn_{Ga}和 Mg_{Ga} 的能级分别位于 0.79 eV 和 1.00 eV 处,证明深受主 能级跃迁很难产生 p型导电(图4)。

图 4 Zn、Mg:Ga₂O₃薄膜 PL 辐射机理图^[50] Fig. 4 PL radiation mechanism diagram of Zn, Mg:Ga₂O₃ thin film^[50]

5 Ga₂O₃材料的其他元素的掺杂

基于上面的离子掺杂,人们还研究了其他一些 元素比如Cr和Mn的掺杂。通过Cr、Mn的掺杂,能 有效地对Ga₂O₃材料原本的发光性能和电导率进行 调控,为Ga₂O₃基光电子器件的实际应用提供了充 足的理论与实验依据。

Fujihara 等^[51]研究了掺 Cr³⁺的β-Ga₂O₃的 PL 特性,发现 Cr³⁺的加入抑制了 Ga₂O₃中原本的绿色特征

发光峰的发射。经过推断认为,紫外光激发下, β -Ga₂O₃晶格中Ga³⁺的能量能更有效地转移给Cr³⁺; Luchechko等^[52]通过Cr³⁺和Mg²⁺掺杂β-Ga₂O₃单晶 的热释发光(TSL),发现在285K时,热释光(TL)峰 中积累的光和与Cr³⁺浓度有关,推断Cr³⁺的掺杂导致 了该峰中出现了电子阱;Wang等^[53]经过蒙特卡罗模 拟发现,Mn取代八面体Ga原子可以达到最稳定的 掺杂体系。多价Mn掺杂剂,可以在基质载流子浓度 很低时提供电子,而在载流子浓度很高时捕获电子。

6 结束语

本文从Ga₂O₃材料制备和杂质掺杂方面进行了 总结。通过选取不同的掺杂剂,可以有效地调控 Ga₂O₃的光学性质和导电能力。为了满足Ga₂O₃日 益增长的材料性质要求,仍然面临着许多困难与挑 战:1)Ga2O3的单晶制备比较困难,普遍存在多晶和 开裂等问题。低成本、大尺寸和高质量的Ga₂O₃晶 体是其走向产业实用的前提;2)稀土离子掺杂 Ga₂O₃, RE的发光性能还需进一步改善, 在对不可 规避的本征缺陷进行特性调控过程中,尚有不明确 的地方。而且目前稀土离子发光的激发路径比较 单一,相关理论和实验仍需继续探索;3)实验数据 上虽然已证实V_{Ga}的存在,并有望成为p型导电的来 源,但由于其本身较高的缺陷形成能及较深的跃迁 能级,限制了V_{Ga}在p型导电方面的应用。目前,杂 质Zn、Mg的掺杂理论和实验,均未实现普遍、高效p 型 Ga_2O_3 的掺杂方式,所以寻找更高效的p型 Ga_2O_3 掺杂方式成为未来 Ga₂O₃材料进一步发展的关键 所在。

参考文献

- [1] Roy R, Hill V G, Osborn E F. Polymorphism of Ga₂O₃ and the system Ga₂O₃-H₂O[J]. Journal of the American Chemical Society, 1952, 74(3): 719-722.
- [2] Wong M H, Higashiwaki M. Vertical β-Ga₂O₃ power transistors: a review[J]. IEEE Transactions on Electron Devices, 2020, 67(10): 3925-3937.
- [3] Xu J J, Zheng W, Huang F. Gallium oxide solarblind ultraviolet photodetectors: a review[J]. Journal of Materials Chemistry C, 2019, 7(29): 8753-8770.
- [4] Huso J, McCluskey M D, Yu Y C, et al. Localized UV emitters on the surface of β-Ga₂O₃[J]. Scientific Reports, 2020, 10: 21022.
- [5] Ji M, Taylor N R, Kravchenko I, et al. Demonstration of large-size vertical Ga₂O₃ Schottky barrier diodes[J]. IEEE Transactions on Power Electronics, 2020, 36(1): 41-44.
- [6] Li X, Wang X D, Ma H, et al. Research progress on adjusting and controlling luminescence performance of GaN: Eu³⁺ materials[J]. Laser & Optoelectronics Progress, 2020, 57(21): 210004.

李祥, 王晓丹, 马海, 等. GaN: Eu³⁺材料发光特性的 调控研究进展[J]. 激光与光电子学进展, 2020, 57 (21): 210004.

[7] Shao C Y, Yu C L, Hu L L. Radiation-resistant

active fibers for space applications[J]. Chinese Journal of Lasers, 2020, 47(5): 0500014. 邵冲云,于春雷,胡丽丽.面向空间应用耐辐照有源 光纤研究进展[J].中国激光, 2020, 47(5): 0500014.

- [8] Wang Z, Xie W Q, Dou A J, et al. 2 μm fluorescence properties of Tm³⁺ and Ho³⁺ ions doped tellurite-germanate glass[J]. Chinese Journal of Lasers, 2020, 47(10): 1003004.
 王震,谢文青,豆奥举,等.掺铥钬离子碲锗酸盐玻璃 2 μm 发光性能研究[J].中国激光, 2020, 47(10): 1003004.
- [9] Chen Z W, Guo D Y, Li P G, et al. Low driven voltage red LEDs using Eu-doped Ga₂O₃ films on GaAs[J]. Applied Physics Express, 2019, 12(6): 061009.
- [10] Guo D, Guo Q, Chen Z, et al. Review of Ga₂O₃based optoelectronic devices[J]. Materials Today Physics, 2019, 11: 100157.
- [11] Chen Z W, Wang X, Zhang F B, et al. Observation of low voltage driven green emission from erbium doped Ga₂O₃ light-emitting devices[J]. Applied Physics Letters, 2016, 109(2): 022107.
- [12] Pearton S J, Yang J C, Cary P H, et al. A review of Ga₂O₃ materials, processing, and devices[J]. Applied Physics Reviews, 2018, 5(1): 011301.
- [13] Peelaers H, van de Walle C G. Doping of Ga₂O₃ with transition metals[J]. Physical Review B, 2016, 94 (19): 195203.
- [14] Shi R P, Huang X D, Sin J K O, et al. Nb-doped Ga₂O₃ as charge-trapping layer for nonvolatile memory applications[J]. Microelectronics Reliability, 2016, 65: 64-68.
- [15] Zhou W, Xia C T, Sai Q L, et al. Controlling n-type conductivity of β-Ga₂O₃ by Nb doping[J]. Applied Physics Letters, 2017, 111(24): 242103.
- [16] Chikoidze E, Fellous A, Perez-Tomas A, et al. Ptype β-gallium oxide: a new perspective for power and optoelectronic devices[J]. Materials Today Physics, 2017, 3: 118-126.
- [17] Chikoidze E, Sartel C, Mohamed H, et al. Enhancing the intrinsic p-type conductivity of the ultra-wide bandgap Ga₂O₃ semiconductor[J]. Journal of Materials Chemistry C, 2019, 7(33): 10231-10239.
- [18] Lyons J L. A survey of acceptor dopants for β -Ga₂O₃ [J]. Semiconductor Science and Technology, 2018, 33(5): 05LT02.
- [19] Chen Z W, Saito K, Tanaka T, et al. Low

第 58 卷 第 15 期/2021 年 8 月/激光与光电子学进展

temperature growth of europium doped Ga_2O_3 luminescent films[J]. Journal of Crystal Growth, 2015, 430: 28-33.

- [20] Higashiwaki M, Fujita S. Gallium oxide[M]. Cham: Springer, 2020.
- [21] Hu D Q, Zhuang S W, Ma Z Z, et al. Study on the optical properties of β-Ga₂O₃ films grown by MOCVD
 [J]. Journal of Materials Science: Materials in Electronics, 2017, 28(15): 10997-11001.
- [22] Asel T J, Steinbrunner E, Hendricks J, et al. Reduction of unintentional Si doping in β-Ga₂O₃ grown via plasma-assisted molecular beam epitaxy [J]. Journal of Vacuum Science & Technology A, 2020, 38(4): 043403.
- [23] Kuramata A, Koshi K, Watanabe S, et al. Highquality β-Ga₂O₃ single crystals grown by edge-defined film-fed growth[J]. Japanese Journal of Applied Physics, 2016, 55(12): 1202A2.
- [24] Zhang J G, Li B, Xia C T, et al. Growth and spectral characterization of β-Ga₂O₃ single crystals[J]. Journal of Physics and Chemistry of Solids, 2006, 67 (12): 2448-2451.
- [25] Galazka Z, Uecker R, Irmscher K, et al. Czochralski growth and characterization of β-Ga₂O₃ single crystals
 [J]. Crystal Research and Technology, 2010, 45(12): 1229-1236.
- [26] Tadjer M J, Lyons J L, Nepal N, et al. Editors' choice: review: theory and characterization of doping and defects in β -Ga₂O₃[J]. ECS Journal of Solid State Science and Technology, 2019, 8(7): Q3187-Q3194.
- [27] Peres M, Lorenz K, Alves E, et al. Doping β -Ga₂O₃ with europium: influence of the implantation and annealing temperature[J]. Journal of Physics D: Applied Physics, 2017, 50(32): 325101.
- [28] Nogales E, Méndez B, Piqueras J, et al. Europium doped gallium oxide nanostructures for room temperature luminescent photonic devices[J]. Nanotechnology, 2009, 20(11): 115201.
- [29] Chen Z W, Wang X, Noda S, et al. Effects of dopant contents on structural, morphological and optical properties of Er doped Ga₂O₃ films[J]. Superlattices and Microstructures, 2016, 90: 207-214.
- [30] Wu Z P, Bai G X, Hu Q R, et al. Effects of dopant concentration on structural and near-infrared luminescence of Nd³⁺-doped beta-Ga₂O₃ thin films[J]. Applied Physics Letters, 2015, 106(17): 171910.
- [31] Nogales E, García J A, Méndez B, et al. Visible and infrared luminescence study of Er doped β-Ga₂O₃ and

 ${\rm Er}_{3}{\rm Ga}_{5}{\rm O}_{12}[J].$ Journal of Physics D: Applied Physics , 2008 , 41(6): 065406.

- [32] Pang M L, Shen W Y, Lin J. Enhanced photoluminescence of Ga₂O₃:Dy³⁺ phosphor films by Li⁺ doping[J]. Journal of Applied Physics, 2005, 97 (3): 033511.
- [33] Hajnal Z, Miró J, Kiss G, et al. Role of oxygen vacancy defect states in the n-type conduction of β-Ga₂O₃[J]. Journal of Applied Physics, 1999, 86(7): 3792-3796.
- [34] Fan M M, Lu Y J, Xu K L, et al. Growth and characterization of Sn-doped β-Ga₂O₃ thin films by chemical vapor deposition using solid powder precursors toward solar-blind ultraviolet photodetection [J]. Applied Surface Science, 2020, 509: 144867.
- [35] Atilgan A, Yildiz A, Harmanci U, et al. β-Ga₂O₃ nanoflakes/p-Si heterojunction self-powered photodiodes
 [J]. Materials Today Communications, 2020, 24: 101105.
- [36] Moser N, McCandless J, Crespo A, et al. Ge-doped β-Ga₂O₃ MOSFETs[J]. IEEE Electron Device Letters, 2017, 38(6): 775-778.
- [37] Neal A T, Mou S, Rafique S, et al. Donors and deep acceptors in β -Ga₂O₃[J]. Applied Physics Letters, 2018, 113(6): 062101.
- [38] Baldini M, Albrecht M, Fiedler A, et al. Editors' choice: Si- and Sn-doped homoepitaxial β-Ga₂O₃ layers grown by MOVPE on (010)-oriented substrates
 [J]. ECS Journal of Solid State Science and Technology, 2016, 6(2): Q3040-Q3044.
- [39] Krishnamoorthy S, Xia Z B, Bajaj S, et al. Deltadoped β-gallium oxide field-effect transistor[J]. Applied Physics Express, 2017, 10(5): 051102.
- [40] Leedy K D, Chabak K D, Vasilyev V, et al. Highly conductive homoepitaxial Si-doped Ga₂O₃ films on (010) β-Ga₂O₃ by pulsed laser deposition[J]. Applied Physics Letters, 2017, 111(1): 012103.
- [41] Mauze A, Zhang Y W, Itoh T, et al. Sn doping of (010) β-Ga₂O₃ films grown by plasma-assisted molecular beam epitaxy[J]. Applied Physics Letters, 2020, 117(22): 222102.
- [42] Hoshikawa K, Kobayashi T, Ohba E, et al. 50 mm diameter Sn-doped (001) β-Ga₂O₃ crystal growth using the vertical Bridgeman technique in ambient air
 [J]. Journal of Crystal Growth, 2020, 546: 125778.
- [43] Baldini M, Albrecht M, Fiedler A, et al. Semiconducting Sn-doped β-Ga₂O₃ homoepitaxial layers grown by metal organic vapour-phase epitaxy

[J]. Journal of Materials Science, 2016, 51(7): 3650-3656.

- [44] Akaiwa K, Kaneko K, Ichino K, et al. Conductivity control of Sn-doped α-Ga₂O₃ thin films grown on sapphire substrates[J]. Japanese Journal of Applied Physics, 2016, 55(12): 1202BA.
- [45] Chen J X, Li X X, Tao J J, et al. Fabrication of a Nb-doped β-Ga₂O₃ nanobelt field-effect transistor and its low-temperature behavior[J]. ACS Applied Materials & Interfaces, 2020, 12(7): 8437-8445.
- [46] Cui H Y, Mohamed H F, Xia C T, et al. Tuning electrical conductivity of β-Ga₂O₃ single crystals by Ta doping[J]. Journal of Alloys and Compounds, 2019, 788: 925-928.
- [47] Wang X H, Zhang F B, Saito K, et al. Electrical properties and emission mechanisms of Zn-doped β-Ga₂O₃ films[J]. Journal of Physics and Chemistry of Solids, 2014, 75(11): 1201-1204.
- [48] Qian Y P, Guo D Y, Chu X L, et al. Mg-doped ptype β -Ga₂O₃ thin film for solar-blind ultraviolet photodetector[J]. Materials Letters, 2017, 209:

558-561.

- [49] Ho Q D, Frauenheim T, Deák P. Theoretical confirmation of the polaron model for the Mg acceptor in β -Ga₂O₃[J]. Journal of Applied Physics, 2018, 124(14): 145702.
- [50] Su Y L, Guo D Y, Ye J H, et al. Deep level acceptors of Zn-Mg divalent ions dopants in β-Ga₂O₃ for the difficulty to p-type conductivity[J]. Journal of Alloys and Compounds, 2019, 782: 299-303.
- [51] Fujihara S, Shibata Y. Luminescence of Cr^{3+} ions associated with surpassing the green-emissive defect centers in β -Ga₂O₃[J]. Journal of Luminescence, 2006, 121(2): 470-474.
- [52] Luchechko A, Vasyltsiv V, Kostyk L, et al. The effect of Cr³⁺ and Mg²⁺ impurities on thermoluminescence and deep traps in β-Ga₂O₃ crystals[J]. ECS Journal of Solid State Science and Technology, 2020, 9(4): 045008.
- [53] Wang X L, Quhe R G, Zhi Y S, et al. The electronic structure and magnetic property of the Mn doped β-Ga₂O₃[J]. Superlattices and Microstructures, 2019, 125: 330-337.