• Journal of Semiconductors
  • Vol. 41, Issue 6, 062404 (2020)
Guiping Cao and Ning Dong
Author Affiliations
  • Research Center of High Speed Machine Vision of Hefei, Hefei 230088, China
  • show less
    DOI: 10.1088/1674-4926/41/6/062404 Cite this Article
    Guiping Cao, Ning Dong. An 18-bit sigma –delta switched-capacitor modulator using 4-order single-loop CIFB architecture[J]. Journal of Semiconductors, 2020, 41(6): 062404 Copy Citation Text show less

    Abstract

    Oversampling sigma–delta (Σ–Δ) analog-to-digital converters (ADCs) are currently one of the most widely used architectures for high-resolution ADCs. The rapid development of integrated circuit manufacturing processes has allowed the realization of a high resolution in exchange for speed. Structurally, the Σ–Δ ADC is divided into two parts: a front-end analog modulator and a back-end digital filter. The performance of the front-end analog modulator has a marked influence on the entire Σ–Δ ADC system. In this paper, a 4-order single-loop switched-capacitor modulator with a CIFB (cascade-of-integrators feed-back) structure is proposed. Based on the chosen modulator architecture, the ASIC circuit is implemented using a chartered 0.35 μm CMOS process with a chip area of 1.72 × 0.75 mm2. The chip operates with a 3.3-V power supply and a power dissipation of 22 mW. According to the results, the performance of the designed modulator has been improved compared with a mature industrial chip and the effective number of bits (ENOB) was almost 18-bit.
    $ H\left( z \right) = {\rm{NTF}}\left( z \right) = \frac{{N\left( z \right)}}{{D\left( z \right)}} = \mathop \sum \limits_{i = 0}^m {a_i}{z^i}/\mathop \sum \limits_{j = 0}^n {a_j}{z^j}. $ (1)

    View in Article

    $ {\rm{SQNR}} \propto 10{\rm{log}}\frac{{2N + 1}}{{{\pi ^{2N}}}} + \left( {20N + 10} \right){\rm{log}}\left( {{\rm{OSR}}} \right), $ ()

    View in Article

    $ {{H}}\left( {{z}} \right) = {\rm{NTF}}\left( {{z}} \right) = \frac{{{z^4} - 3.999{z^3} + 5.999{z^2} - 3.999z + 1}}{{{z^4} - 3.181{z^3} + 3.86{z^2} - 2.112z + 0.4383}}. $ (2)

    View in Article

    $ \rm{NTF}_{k = 1}(z) \!=\! \frac{{{{(z - 1)}^4} \!+\! ({c_1}{g_1} + {c_3}{g_2}){{(z - 1)}^2} + {c_1}{c_3}{g_1}{g_2}}}{{{{(z - 1)}^4} + {a_4}{c_4}{{(z - 1)}^3} \!+\! ({a_3}{c_3}{c_4} + {c_1}{g_1} \!+\! {c_3}{g_2}){{(z - 1)}^2} \!+\! ({a_2}{c_2}{c_3}{c_4} + {a_4}{c_1}{c_4}{g_1})(z - 1) \!+\! ({a_1}{c_1}{c_2}{c_3}{c_4} \!+\! {a_3}{c_1}{c_3}{c_4}{g_1} + {c_1}{c_3}{g_1}{g_2})}}. $ ()

    View in Article

    $ \begin{array}{l} \Delta {T_{{\rm{delay}}}}\left( {{\rm{S}}1,{\rm{S}}1{\rm{d}}} \right) = T_{{\rm{d}}2} + n T_{{\rm{d}}3},\;\;\;\;\;n = 1,\\ \Delta {T_{{\rm{gap}}}}\left( {{\rm{S}}1,{\rm{S}}2} \right) = T_{{\rm{d}}1} + T_{{\rm{d}}2} + m T_{{\rm{d}}3},\;\;\;\;\;m = 3. \end{array} $ ()

    View in Article

    ${\rm{FOM-w}} = \frac{{{\rm{Power}}\;\left( {\rm{W}} \right)}}{{{2^{{\rm{resolution}}\left( {{\rm{bit}}} \right)}} \times {\rm{DOR}}\left( {\dfrac{{{\rm{sample}}}}{{{s}}}} \right)}} \times {10^{12}}. $ ()

    View in Article

    Guiping Cao, Ning Dong. An 18-bit sigma –delta switched-capacitor modulator using 4-order single-loop CIFB architecture[J]. Journal of Semiconductors, 2020, 41(6): 062404
    Download Citation