• Journal of Semiconductors
  • Vol. 40, Issue 10, 101306 (2019)
Cheng Wang1 and Yueguang Zhou1、2、3
Author Affiliations
  • 1School of Information Science and Technology, ShanghaiTech University, Shanghai 201210, China
  • 2Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, China
  • 3University of Chinese Academy of Sciences, Beijing 100049, China
  • show less
    DOI: 10.1088/1674-4926/40/10/101306 Cite this Article
    Cheng Wang, Yueguang Zhou. Dynamics of InAs/GaAs quantum dot lasers epitaxially grown on Ge or Si substrate[J]. Journal of Semiconductors, 2019, 40(10): 101306 Copy Citation Text show less
    References

    [1] R Soref. The past, present, and future of silicon photonics. IEEE J Sel Top Quantum Electron, 12, 1678(2006).

    [2] X Lin, Y Riveson, N T Yardimci et al. All-optical machine learning using diffractive deep neural networks. Science, 361, 1004(2018).

    [3] J Cardenas, C B Poitras, J T Robinson et al. Low loss etchless silicon photonic waveguides. Opt Express, 17, 4752(2009).

    [4] L Vivien, J Osmond, J M Fédéli et al. 42 GHz p.i.n germanium photodetector integrated in a silicon-on-insulator waveguide. Opt Express, 17, 6252(2009).

    [5] G T Reed, G Mashanovich, F Y Gardes et al. Silicon optical modulators. Nat Photon, 4, 518(2010).

    [6] D Liang, J E Bowers. Recent progress in lasers on silicon. Nat Photon, 4, 511(2010).

    [7] R Alcotte, M Martin, J Moeyaert et al. Epitaxial growth of antiphase boundary free GaAs layer on 300 mm Si (001) substrate by metalorganic chemical vapour deposition with high mobility. APL Mater, 4, 046101(2016).

    [8] A Y Liu, R W Herrick, O Ueda et al. Reliability of InAs/GaAs quantum dot lasers epitaxially grown on silicon. IEEE J Sel Top Quantum Electron, 21, 690(2015).

    [9] K Tanabe, T Rae, K Watanabe et al. High-temperature 1.3 μm InAs/GaAs quantum dot lasers on Si substrates fabricated by wafer bonding. Appl Phys Express, 6, 082703(2013).

    [10] Y Urino, N Hatori, K Mizutani et al. First demonstration of athermal silicon optical interposers with quantum dot lasers operating up to 125 °C. J Lightw Technol, 33, 1223(2015).

    [11] S Uvin, S Kumari, A D Groote et al. 1.3 μm InAs/GaAs quantum dot DFB laser integrated on a Si waveguide circuit by means of adhesive die-to-wafer bonding. Opt Express, 26, 18302(2018).

    [12] H Liu, T Wang, Q Jiang et al. Long-wavelength InAs/GaAs quantum-dot laser diode monolithically grown on Ge substrate. Nat Photon, 5, 416(2011).

    [13] J C Norman, D Jung, Y Wan et al. Perspective: The future of quantum dot photonic integrated circuits. APL Photonics, 3, 030901(2018).

    [14] D Jung, R Herrick, J Norman et al. Impact of threading dislocation density on the lifetime of InAs quantum dot lasers on Si. Appl Phys Lett, 112, 153507(2018).

    [15] D O’Brien, S P Hegarty, G Huyet et al. Feedback sensitivity of 1.3 μm InAs/GaAs quantum dot lasers. Electron Lett, 39, 1819(2003).

    [16] D G Deppe, K Shavritranuruk, G Ozgur et al. Quantum dot laser diode with low threshold and low internal loss. Electron Lett, 45, 54(2009).

    [17] M Sugawara, M Usami. Quantum dot devices handling the heat. Nat Photon, 3, 30(2009).

    [18] A Lee, Q Jiang, M Tang et al. Continuous-wave InAs/GaAs quantum-dot laser diodes monolithically grown on Si substrate with low threshold current densities. Opt Express, 20, 22181(2012).

    [19] S Chen, W Li, J Wu et al. Electrically pumped continuous-wave III–V quantum dot lasers on silicon. Nat Photon, 10, 307(2016).

    [20] A Y Liu, J Peters, X Huang et al. Electrically pumped continuous-wave 1.3 μm quantum-dot lasers epitaxially grown on on-axis (001) GaP/Si. Opt Lett, 42, 338(2017).

    [21] M A Tischler, T Katsuyama, N A El-Masry et al. Defect reduction in GaAs epitaxial layers using a GaAsP–InGaAs strained-layer superlattice. Appl Phys Lett, 46, 294(1985).

    [22] A Y Liu, C Zhang, J Norman et al. High performance continuous wave 1.3 μm quantum dot lasers on silicon. Appl Phys Lett, 104, 041104(2014).

    [23] A D Lee, Q Jiang, M Tang et al. InAs/GaAs quantum-dot lasers monolithically grown on Si, Ge, and Ge-on-Si substrates. IEEE J Sel Top Quantum Electron, 19, 1901107(2013).

    [24] A Y Liu, S Srinivasan, J Norman et al. Quantum dot lasers for silicon photonics. Photon Res, 3, B1(2015).

    [25] J C Norman, D Jung, Z Zhang et al. A review of high-performance quantum dot lasers on silicon. IEEE J Quantum Electron, 55, 1(2019).

    [26] C Wang, J P Zhuang, F Grillot et al. Contribution of off-resonant states to the phase noise of quantum dot lasers. Opt Express, 24, 29872(2016).

    [27] K Sears, M Buda, H Tan et al. Modeling and characterization of InAs/GaAs quantum dot lasers grown using metal organic chemical vapor deposition. J Appl Phys, 101, 013112(2007).

    [28]

    [29] K K Linder, J Phillips, O Oasaimeh et al. Self-organized In0.4Ga0.6As quantum-dot lasers grown on Si substrates. Appl Phys Lett, 74, 1355(1999).

    [30]

    [31] M Osinski, J Buus. Linewidth broadening factor in semiconductor lasers–An overview. IEEE J Quantum Electron, 23, 9(1987).

    [32] S K Hwang, D H Liang. Effects of linewidth enhancement factor on period-one oscillations of optically injected semiconductor lasers. Appl Phys Lett, 89, 061120(2006).

    [33] S Melnik, G Huyet. The linewidth enhancement factor α of quantum dot semiconductor lasers. Opt Express, 14, 2950(2006).

    [34] M Gioannini, I Montrosset. Numerical analysis of the frequency chirp in quantum-dot semiconductor lasers. IEEE J Quantum Electron, 43, 941(2007).

    [35] B Globisch, C Otto, E Scholl et al. Influence of carrier lifetimes on the dynamical behavior of quantum-dot lasers subject to optical feedback. Phys Rev E, 86, 046201(2012).

    [36] D Bimberg, N Kirstaedter, N N Ledentsov et al. InGaAs–GaAs quantum-dot lasers. IEEE J Sel Top Quantum Electron, 3, 196(1997).

    [37] T C Newell, D J Bossert, A Stintz et al. Gain and linewidth enhancement factor in InAs quantum-dot laser diodes. IEEE Photon Technol Lett, 11, 1527(1999).

    [38] B Dagens, A Markus, J X Chen et al. Giant linewidth enhancement factor and purely frequency modulated emission from quantum dot laser. Electron Lett, 41, 323(2005).

    [39] Z Mi, P Bhattacharya. DC and dynamic characteristics of P-doped and tunnel injection 1.65-μm InAs quantum-dash lasers grown on InP (001). IEEE J Quantum Electron, 42, 1224(2006).

    [40] A Martinez, K Merghem, S Bouchoule et al. Dynamic properties of InAs/InP (311)B quantum dot Fabry-Perot lasers emitting at 1.52 μm. Appl Phys Lett, 93, 021101(2008).

    [41] S Bhowmick, M Z Baten, T Frost et al. High performance InAs/In0.53Ga0.23Al0.24As/InP quantum dot 1.55 μm tunnel injection laser. IEEE J Quantum Electron, 50, 7(2014).

    [42] M Gioannini, A Sevega, t I Montrosset. Simulations of differential gain and linewidth enhancement factor of quantum dot semiconductor lasers. Opt Quantum Electron, 38, 381(2006).

    [43] Y G Zhou, X Y Zhao, C F Cao et al. High optical feedback tolerance of InAs/GaAs quantum dot lasers on germanium. Opt Express, 26, 28131(2018).

    [44] M Ahmed, M Yamada, M Saito. Numerical modeling of intensity and phase noise in semiconductor lasers. IEEE J Quantum Electron, 37, 1600(2001).

    [45] R J Fronen, L K J Vandamme. Low-frequency intensity noise in semiconductor lasers. IEEE J Quantum Electron, 24, 724(1988).

    [46] A Capua, L Rozenfeld, V Mikhelashvili et al. Direct correlation between a highly damped modulation response and ultra low relative intensity noise in an InAs/GaAs quantum dot laser. Opt Express, 15, 5388(2007).

    [47] J Duan, X G Wang, Y G Zhou et al. Carrier-noise-enhanced relative intensity noise of quantum dot lasers. IEEE J Quantum Electron, 54, 1(2018).

    [48]

    [49] D O'Brien, S P Hegarty, G Huyet et al. Sensitivity of quantum-dot semiconductor lasers to optical feedback. Opt Lett, 29, 1072(2004).

    [50] J O Binder, G D Cormack. Mode selection and stability of a semiconductor laser with weak optical feedback. IEEE J Quantum Electron, 25, 2255(1989).

    [51] J Helms, K Petermann. A simple analytic expression for the stable operation range of laser diode with optical feedback. IEEE J Quantum Electron, 26, 833(1990).

    [52] B Tromborg, J Mork. Nonlinear injection locking dynamics and the onset of coherence collapse in external cavity lasers. IEEE J Quantum Electron, 26, 642(1990).

    [53] C Wang, K Schires, M Osinski et al. Thermally insensitive determination of the linewidth broadening factor in nanostructured semiconductor lasers using optical injection locking. Sci Rep, 6, 27825(2016).

    [54] Y G Zhou, J Duan, H Huang et al. Intensity noise and pulse oscillation of an InAs/GaAs quantum dot laser on germanium. IEEE J Sel Top Quantum Electron, 25, 1(2019).

    [55] J Duan, H Huang, D Jung et al. Semiconductor quantum dot lasers epitaxially grown on silicon with low linewidth enhancement factor. Appl Phys Lett, 112, 251111(2018).

    [56] D Jung, J Norman, M J Kennedy et al. High efficiency low threshold current 1.3 μm InAs quantum dot lasers on on-axis (001) GaP/Si. Appl Phys Lett, 111, 122107(2017).

    [57] K Jungho, S Hui, S Minin et al. Comparison of linewidth enhancement factor between p-doped and undoped quantum-dot lasers. IEEE Photon Technol Lett, 18, 1022(2006).

    [58] Y G Zhou, C Zhou, C F Cao et al. Relative intensity noise of InAs quantum dot lasers epitaxially grown on Ge. Opt Express, 25, 28817(2017).

    [59] U Feiste. Optimization of modulation bandwidth in DBR lasers with detuned bragg reflectors. IEEE J Quantum Electron, 34, 2371(1998).

    [60] A Laakso, M Dumitrescu. Modified rate equation model including the photon-photon resonance. Opt Quantum Electron, 42, 785(2011).

    [61] A Y Liu, T Komljenovic, M L Davenport et al. Reflection sensitivity of 1.3 μm quantum dot lasers epitaxially grown on silicon. Opt Express, 25, 9535(2017).

    [62] N Schunk, K Petermann. Numerical analysis of the feedback regimes for a single-mode semiconductor laser with external feedback. IEEE J Quantum Electron, 24, 1242(1988).

    [63] J Duan, H Huang, B Dong et al. 1.3-μm reflection insensitive InAs/GaAs quantum dot lasers directly grown on silicon. IEEE Photon Technol Lett, 31, 345(2019).

    [64] M Liao, S Chen, Z Liu et al. Low-noise 1.3 μm InAs/GaAs quantum dot laser monolithically grown on silicon. Photon Res, 6, 1062(2018).

    [65] H Huang, J Duan, D Jung et al. Analysis of the optical feedback dynamics in InAs/GaAs quantum dot lasers directly grown on silicon. J Opt Soc Am B, 35, 2780(2018).

    [66] T Kageyama, Q H Vo, K Watanabe et al. Large modulation bandwidth (13.1 GHz) of 1.3 μm-range quantum dot lasers with high dot density and thin barrier layer. Compound Semiconductor Week, MoC3-4(2016).

    [67] M Ishida, M Matsuda, Y Tanaka et al. Temperature-stable 25-Gbps direct-modulation in 1.3-μm InAs/GaAs quantum dot lasers. Conference on Lasers and Electro-Optics, CM1l.2(2012).

    [68] A Abdollahinia, S Banyoudeh, A Rippien et al. Temperature stability of static and dynamic properties of 1.55 μm quantum dot lasers. Opt Express, 26, 6056(2018).

    [69] S Banyoudeh, A Abdollahinia, O Eyal et al. Temperature-insensitive high-speed directly modulated 1.55-μm quantum dot lasers. IEEE Photon Technol Lett, 28, 2451(2016).

    [70] C Hantschmann, P P Vasilev, A Wonfor et al. Understanding the bandwidth limitations in monolithic 1.3 μm InAs/GaAs quantum dot lasers on silicon. J Lightw Technol, 37, 949(2019).

    [71] D Inoue, D Jung, J Norman et al. Directly modulated 1.3 μm quantum dot lasers epitaxially grown on silicon. Opt Express, 26, 7022(2018).

    [72] M G Thompson, A R Rae, X Mo et al. InGaAs quantum-dot mode-locked laser diodes. IEEE J Sel Top Quantum Electron, 15, 661(2009).

    [73] S Liu, J C Norman, D Jung et al. Monolithic 9 GHz passively mode locked quantum dot lasers directly grown on on-axis (001) Si. Appl Phys Lett, 113, 041108(2018).

    [74] G J Simonis, K G Purchase. Optical generation, distribution, and control of microwaves using laser heterodyne. IEEE Trans Microwave Theory Tech, 38, 667(1990).

    [75] A Stöhr, A Akrout, R Buß et al. 60 GHz radio-over-fiber technologies for broadband wireless services. J Opt Netw, 8, 471(2009).

    [76] P J Delfyett, D H Hartman, S Z Ahmad. Optical clock distribution using a mode-locked semiconductor laser diode system. J Lightw Technol, 9, 1646(1991).

    [77] T Ohno, K Sato, R Iga et al. Recovery of 160 GHz optical clock from 160 Gbit/s data stream using mode locked laser diode. Electron Lett, 40, 265(2004).

    [78] E U Rafailov, M A Cataluna, W Sibbett. Mode-locked quantum-dot lasers. Nature Photon, 1, 395(2007).

    [79] S Liu, X Wu, D Jung et al. High-channel-count 20 GHz passively mode-locked quantum dot laser directly grown on Si with 41 Tbit/s transmission capacity. Optica, 6, 128(2019).

    [80] G Carpintero, M G Thompson, R V Penty et al. Low noise performance of passively mode-locked 10-GHz quantum-dot laser diode. IEEE Photon Technol Lett, 21, 389(2009).

    [81] M L Davenport, S Liu, J E Bowers. Integrated heterogeneous silicon/III–V mode-locked lasers. Photon Res, 6, 468(2018).

    [82] J Renaudier, R Brenot, B Dagens et al. 45 GHz self-pulsation with narrow linewidth in quantum dot Fabry-Perot semiconductor lasers at 1.5 μm. Electron Lett, 41, 1007(2005).

    [83] J Liu, Z Liu, S Raymond et al. Dual-wavelength 92.5 GHz self-mode-locked InP-based quantum dot laser. Opt Lett, 33, 1702(2008).

    [84] S Liu, D Jung, J C Norman et al. 490 fs pulse generation from passively mode-locked single section quantum dot laser directly grown on on-axis GaP/Si. Electron Lett, 54, 432(2018).

    [85] M Rossetti, X Tianhong, P Bardella et al. Impact of gain saturation on passive mode locking regimes in quantum dot lasers with straight and tapered waveguides. IEEE J Quantum Electron, 47, 1404(2011).

    [86] M Rossetti, P Bardella, I Montrosset. Time-domain travelling-wave model for quantum dot passively mode-locked lasers. IEEE J Quantum Electron, 47, 139(2011).

    [87] P Bardella, L L Columbo, M Gioannini. Self-generation of optical frequency comb in single section quantum dot Fabry-Perot lasers: a theoretical study. Opt Express, 25, 26234(2017).

    [88] Y Wang, S Chen, Y Yu et al. Monolithic quantum-dot distributed feedback laser array on silicon. Optica, 5, 528(2018).

    [89] H Su, L F Lester. Dynamic properties of quantum dot distributed feedback lasers: high speed, linewidth and chirp. J Phys D, 38, 2112(2005).

    [90] Z G Lu, P J Poole, J R Liu et al. High-performance 1.52 μm InAs/InP quantum dot distributed feedback laser. Electron Lett, 47, 818(2011).

    [91] A Becker, V Sichkovskyi, M Bjelica et al. Narrow-linewidth 1.5-μm quantum dot distributed feedback lasers. Proc SPIE, 97670Q(2016).

    [92] T Septon, S Gosh, A Becker et al. Spectral characteristics of narrow linewidth InAs/InP quantum dot distributed feedback lasers. 26th International Semiconductor Laser Conference, TuD4(2018).

    [93] J Duan, H Huang, Z G Lu et al. Narrow spectral linewidth in InAs/InP quantum dot distributed feedback lasers. Appl Phys Lett, 112, 121102(2018).

    [94] T Septon, S Gosh, A Becker et al. Narrow linewidth InAs/InP quantum dot DFB laser. Optical Fiber Communication Conference, W3A.8(2019).

    [95] Y Wan, Q Li, Y Geng et al. InAs/GaAs quantum dots on GaAs-on-V-grooved-Si substrate with high optical quality in the 1.3 μm band. Appl Phys Lett, 107, 081106(2015).

    [96] Q Li, K W Ng, K M Lau. Growing antiphase-domain-free GaAs thin films out of highly ordered planar nanowire arrays on exact (001) silicon. Appl Phys Lett, 106, 072105(2015).

    [97] S Zhu, B Shi, Q Li et al. 1.5 μm quantum-dot diode lasers directly grown on CMOS-standard (001) silicon. Appl Phys Lett, 113, 221103(2018).

    [98] Y Wan, Q Li, A Y Liu et al. Sub-wavelength InAs quantum dot micro-disk lasers epitaxially grown on exact Si (001) substrates. Appl Phys Lett, 108, 221101(2016).

    [99] Y Wan, Q Li, A Y Liu et al. Optically pumped 1.3 μm room-temperature InAs quantum-dot micro-disk lasers directly grown on (001) silicon. Opt Lett, 41, 1664(2016).

    [100] Y Wan, D Jung, J Norman et al. O-band electrically injected quantum dot micro-ring lasers on on-axis (001) GaP/Si and V-groove Si. Opt Express, 25, 26853(2017).

    [101] Y Wan, J Norman, Q Li et al. 1.3 μm submilliamp threshold quantum dot micro-lasers on Si. Optica, 4, 940(2017).

    [102] B Shi, S Zhu, Q Li et al. 1.55 μm room-temperature lasing from subwavelength quantum-dot microdisks directly grown on (001) Si. Appl Phys Lett, 110, 121109(2017).

    [103] B Shi, S Zhu, Q Li et al. Continuous-wave optically pumped 1.55 μm InAs/InAlGaAs quantum dot microdisk lasers epitaxially grown on silicon. ACS Photonics, 4, 204(2017).

    [104] Y Han, Q Li, S Zhu et al. Continuous-wave lasing from InP/InGaAs nanoridges at telecommunication wavelengths. Appl Phys Lett, 111, 212101(2017).

    [105] Y Han, W K Ng, C Ma et al. Room-temperature InP/InGaAs nano-ridge lasers grown on Si and emitting at telecom bands. Optica, 5, 918(2018).

    [106] Y Han, Q Li, K W Ng et al. InGaAs/InP quantum wires grown on silicon with adjustable emission wavelength at telecom bands. Nanotechnology, 29, 225601(2018).

    [107] Y Han, W K Ng, Y Xue et al. Telecom InP/InGaAs nanolaser array directly grown on (001) silicon-on-insulator. Opt Lett, 44, 767(2019).

    Cheng Wang, Yueguang Zhou. Dynamics of InAs/GaAs quantum dot lasers epitaxially grown on Ge or Si substrate[J]. Journal of Semiconductors, 2019, 40(10): 101306
    Download Citation