• Journal of Semiconductors
  • Vol. 40, Issue 10, 101306 (2019)
Cheng Wang1 and Yueguang Zhou1、2、3
Author Affiliations
  • 1School of Information Science and Technology, ShanghaiTech University, Shanghai 201210, China
  • 2Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, China
  • 3University of Chinese Academy of Sciences, Beijing 100049, China
  • show less
    DOI: 10.1088/1674-4926/40/10/101306 Cite this Article
    Cheng Wang, Yueguang Zhou. Dynamics of InAs/GaAs quantum dot lasers epitaxially grown on Ge or Si substrate[J]. Journal of Semiconductors, 2019, 40(10): 101306 Copy Citation Text show less

    Abstract

    Growing semiconductor laser sources on silicon is a crucial but challenging technology for developing photonic integrated circuits (PICs). InAs/GaAs quantum dot (Qdot) lasers have successfully circumvented the mismatch problem between III–V materials and Ge or Si, and have demonstrated efficient laser emission. In this paper, we review dynamical characteristics of Qdot lasers epitaxially grown on Ge or Si, in comparison with those of Qdot lasers on native GaAs substrate. We discuss properties of linewidth broadening factor, laser noise and its sensitivity to optical feedback, intensity modulation, as well as mode locking operation. The investigation of these dynamical characteristics is beneficial for guiding the design of PICs in optical communications and optical computations.
    $\frac{{{\rm{d}}{N_{\rm{RS}}}}}{{{\rm{d}}t}} = \eta \frac{I}{q} + \frac{{{N_{\rm{ES}}}}}{{\tau _{\rm{RS}}^{\rm{ES}}}} - \frac{{{N_{\rm{RS}}}}}{{\tau _{\rm{ES}}^{\rm{RS}}}}\left( {1 - {\rho _{\rm{ES}}}} \right) - \frac{{{N_{\rm{RS}}}}}{{\tau _{\rm{RS}}^{\rm{spon}}}} - \frac{{{N_{\rm{RS}}}}}{{{\tau _{nr}}}} + {F_{\rm{RS}}},$(1)

    View in Article

    $\begin{split} \frac{{{\rm{d}}{N_{\rm{ES}}}}}{{{\rm{d}}t}} = \, & \left( {\frac{{{N_{\rm{RS}}}}}{{\tau _{\rm{ES}}^{\rm{RS}}}} + \frac{{{N_{\rm{GS}}}}}{{\tau _{\rm{ES}}^{\rm{GS}}}}} \right)\left( {1 - {\rho _{\rm{ES}}}} \right) - \frac{{{N_{\rm{ES}}}}}{{\tau _{\rm{GS}}^{\rm{ES}}}}\left( {1 - {\rho _{\rm{GS}}}} \right) \\ & - \frac{{{N_{\rm{ES}}}}}{{\tau _{\rm{RS}}^{\rm{ES}}}} - \frac{{{N_{\rm{ES}}}}}{{\tau _{\rm{ES}}^{\rm{spon}}}} - \frac{{{N_{\rm{ES}}}}}{{{\tau _{\rm{nr}}}}} + {F_{\rm{ES}}}, \end{split} $(2)

    View in Article

    $\begin{split} \frac{{{\rm{d}}{N_{\rm{GS}}}}}{{{\rm{d}}t}} = & \frac{{{N_{\rm{ES}}}}}{{\tau _{\rm{GS}}^{\rm{ES}}}}\left( {1 - {\rho _{\rm{GS}}}} \right) - \frac{{{N_{\rm{GS}}}}}{{\tau _{\rm{ES}}^{\rm{GS}}}}\left( {1 - {\rho _{\rm{ES}}}} \right) \\ & - {\Gamma _{\rm P}}{v_{\rm g}}{g_{\rm{GS}}}S - \frac{{{N_{\rm{GS}}}}}{{\tau _{\rm{GS}}^{\rm{spon}}}} - \frac{{{N_{\rm{GS}}}}}{{{\tau _{\rm{nr}}}}} + {F_{\rm{GS}}}, \end{split} $(3)

    View in Article

    $\frac{{{\rm{d}}S}}{{{\rm{d}}t}} = \left({\Gamma _{\rm p}}{v_{\rm g}}{g_{\rm{GS}}} - \frac{1}{{{\tau _{\rm p}}}}\right)S + {\beta _{\rm{SP}}}\frac{{{N_{\rm{GS}}}}}{{\tau _{\rm{GS}}^{\rm{spon}}}} + {F_{\rm S}},$(4)

    View in Article

    $\frac{{{\rm{d}}{\varphi} }}{{{\rm{d}}t}} = \frac{1}{2}\Gamma _{\rm P}{v_{\rm g}}\left( {{g_{\rm{GS}}}{k_{\rm{GS}}} + {g_{\rm{ES}}}{k_{\rm{ES}}} + {g_{\rm{RS}}}{k_{\rm{RS}}}} \right) + {F_{\varphi} },$(5)

    View in Article

    ${f_{\rm{ext,c}}} = \frac{{{\Gamma ^2}(1 + {\alpha ^2})}}{{{\alpha ^4}}}\frac{{\tau _{\rm{in}}^2R}}{{4{{(1 - R)}^2}}},$(6)

    View in Article

    $\alpha = - \frac{{2{\text{π}}}}{{L\Delta \lambda }}\times\frac{{{\rm{d}}\lambda /{\rm{d}}I}}{{{\rm{d}}{g_{\rm{net}}}/{\rm{d}}I}},$(7)

    View in Article

    Cheng Wang, Yueguang Zhou. Dynamics of InAs/GaAs quantum dot lasers epitaxially grown on Ge or Si substrate[J]. Journal of Semiconductors, 2019, 40(10): 101306
    Download Citation