• Journal of Semiconductors
  • Vol. 40, Issue 12, 121802 (2019)
Linlin Su, Dong Zhou, Hai Lu, Rong Zhang, and Youdou Zheng
Author Affiliations
  • School of Electronic Science and Engineering, Nanjing University, Nanjing 210093 China
  • show less
    DOI: 10.1088/1674-4926/40/12/121802 Cite this Article
    Linlin Su, Dong Zhou, Hai Lu, Rong Zhang, Youdou Zheng. Recent progress of SiC UV single photon counting avalanche photodiodes[J]. Journal of Semiconductors, 2019, 40(12): 121802 Copy Citation Text show less
    References

    [1] M Razeghi. Short-wavelength solar-blind detectors-Status, prospects, and markets. Proc IEEE, 90, 1006(2002).

    [2] J C Campbell. Recent advances in avalanche photodiodes. J Lightwave Technol, 34, 278(2016).

    [3] Y Wang, Y Qian, X Kong. Photon counting based on solar-blind ultraviolet intensified complementary metal–oxide–semiconductor (ICMOS) for corona detection. IEEE Photonics J, 10, 1(2018).

    [4] B Li, g W Jiang, g Y Liang. Solar-blinded detector by UV radiation from missile plume. Aerosp Electron Warf, 22, 7(2006).

    [5] H Chen, K Liu, L Hu et al. New concept ultraviolet photodetectors. Mater Today, 18, 493(2015).

    [6] D Zamora, A Torres. Method for outlier detection: a tool to assess the consistency between laboratory data and ultraviolet-visible absorbance spectra in wastewater samples. Water Sci Technol, 69, 2305(2014).

    [7] Y Kumamoto, K Fujita, N I Smith et al. Deep-UV biological imaging by lanthanide ion molecular protection. Biomed Opt Express, 7, 158(2016).

    [8] M Razeghi. Deep ultraviolet light-emitting diodes and photodetectors for UV communications. Proc SPIE, 5729, 30(2005).

    [9] J C Jackson, D Phelan, A P Morrison et al. Toward integrated single-photon-counting microarrays. Opt Eng, 42, 112(2002).

    [10] T Isoshima, Y Isojima, K Hakomori et al. Ultrahigh sensitivity single-photon detector using a Si avalanche photodiode for the measurement of ultraweak biochemiluminescence. Rev Sci Instrum, 66, 2922(1995).

    [11] E Munoz, E Monroy, J L Pau et al. III nitrides and UV detection. J Phys-Condens Mat, 13, 7115(2001).

    [12] J L Pau, R Mcclintock, K Minder et al. Geiger-mode operation of back-illuminated GaN avalanche photodiodes. Appl Phys Lett, 91, 41104(2007).

    [13] M Roschke, F Schwierz. Electron mobility models for 4H, 6H, and 3C SiC. IEEE Trans Electron Devices, 48, 1442(2001).

    [14] S J Pearton, J C Zolper, R J Shul et al. GaN: Processing, defects, and devices. J Appl Phys, 86, 1(1999).

    [15] E Monroy, S F Omn, F Calle. Wide-bandgap semiconductor ultraviolet photodetectors. Semicond Sci Tech, 18, R33(2003).

    [16] A R Powell, L B Rowland. SiC materials-progress, status, and potential roadblocks. Proc IEEE, 90, 942(2002).

    [17] F Yan, Y Luo, J H Zhao et al. 4H-SiC visible bling UV avalanche photodiode. Electron Lett, 35, 929(1999).

    [18] X Xin, F Yan, F Yan et al. Demonstration of 4H-SiC UV single photon counting avalanche photodiode. Electron Lett, 41, 212(2005).

    [19] A L Beck, G Karve, S Wang et al. Geiger mode operation of ultraviolet 4H-SiC avalanche photodiodes. IEEE Photon Technol Lett, 17, 1507(2005).

    [20] G A Shaw, A M Siegel, J Model et al. Deep UV photon-counting detectors and applications. Proc SPIE, 7320, 1(2009).

    [21] A L Beck, X Guo, H Liu et al. Low dark count rate 4H-SiC Geiger mode avalanche photodiodes operated under gated quenching at 325 nm. Proc SPIE, 6372, 63720O-1(2006).

    [22] L Li, D Zhou, H Lu et al. 4H-SiC avalanche photodiode linear array operating in Geiger Mode. IEEE Photonics J, 9, 6804207(2017).

    [23] A Restelli, I Rech, P Maccagnani et al. Monolithic silicon matrix detector with 50 μm photon counting pixels. J Mod Optic, 54, 213(2007).

    [24] E Cicek, Z Vashaei, R Mcclintock et al. Geiger-mode operation of ultraviolet avalanche photodiodes grown on sapphire and free-standing GaN substrates. Appl Phys Lett, 96, 261107(2010).

    [25] X Bai, H Liu, D C Mcintosh et al. High-detectivity and high-single-photon-detection-efficiency 4H-SiC avalanche photodiodes. IEEE J Quantum Elect, 45, 300(2009).

    [26] A Vert, S Soloviev, P Sandvik. SiC avalanche photodiodes and photomultipliers for ultraviolet and solar-blind light detection. Phys Status Solidi A, 206, 2468(2009).

    [27] X Bai, D Mcintosh, H Liu et al. Ultraviolet single photon detection with Geiger-mode 4H-SiC avalanche photodiodes. IEEE Photon Technol Lett, 19, 1822(2007).

    [28] L Li, D Zhou, F Liu et al. High fill-factor 4H-SiC avalanche photodiodes with partial trench isolation. IEEE Photon Technol Lett, 28, 2526(2016).

    [29] D Zhou, F Liu, H Lu et al. High-temperature single photon detection performance of 4H-SiC avalanche photodiodes. IEEE Photon Technol Lett, 26, 1136(2014).

    [30] T Kimoto. Material science and device physics in SiC technology for high-voltage power devices. Jpn J Appl Phys, 54, 040103(2015).

    [31] T Katsuno, Y Watanabe, H Fujiwara et al. Analysis of surface morphology at leakage current sources of 4H-SiC Schottky barrier diodes. Appl Phys Lett, 98, 222111(2011).

    [32] S Usami, Y Ando, A Tanaka et al. Correlation between dislocations and leakage current of p-n diodes on a free-standing GaN substrate. Appl Phys Lett, 112, 182106(2018).

    [33] Y Yang, Z Chen. Identification of SiC polytypes by etched Si-face morphology. Mater Sci Semicond Proc, 12, 113(2009).

    [34] Q Wahab, A Ellison, A Henry et al. Influence of epitaxial growth and substrate-induced defects on the breakdown of 4H-SiC Schottky diodes. Appl Phys Lett, 76, 2725(2000).

    [35] B Chen, H Matsuhata, T Sekiguchi et al. Surface defects and accompanying imperfections in 4H-SiC: Optical, structural and electrical characterization. Acta Mater, 60, 51(2012).

    [36] S Maimon, G W Wicks. nBn detector, an infrared detector with reduced dark current and higher operating temperature. Appl Phys Lett, 89, 151109(2006).

    [37] X Ji, B Liu, Y Xu et al. Deep-level traps induced dark currents in extended wavelength InxGa1−xAs/InP photodetector. J Appl Phys, 114, 224502(2013).

    [38] G A M Hurkx, D B M Klaassen, M P G Knuvers. A new recombination model for device simulation including tunneling. IEEE Trans Electron Dev, 39, 331(1992).

    [39] A Vilà, J Trenado, A Arbat et al. Characterization and simulation of avalanche photodiodes for next-generation colliders. Sens Actuators A, 172, 181(2011).

    [40] R Stephen. Performance of InxGa1−x AsyP1–y photodiodes with dark current limited by diffusion, generation recombination, and tunneling. IEEE J Quantum Elect, 17, 217(1981).

    [41] S Yang, D Zhou, X Cai et al. Analysis of dark count mechanisms of 4H-SiC ultraviolet avalanche photodiodes working in Geiger Mode. IEEE Trans Electron Devices, 64, 4532(2017).

    [42] A L Beck, B Yang, X Guo et al. Edge breakdown in 4H-SiC avalanche photodiodes. IEEE J Quantum Electron, 40, 321(2004).

    [43] R L Davies, F E Gentry. Control of electric field at surface of P–N junction. IEEE Trans Electron Devices, 11, 313(1964).

    [44] H Liu, X Zheng, Q Zhou et al. Double mesa sidewall silicon carbide avalanche photodiode. IEEE J Quantum Elect, 45, 1524(2009).

    [45] X Guo, A L Beck, X Li et al. Study of reverse dark current in 4H-SiC avalanche photodiodes. IEEE J Quantum Elect, 41, 562(2005).

    [46] K Yamaguchi, T Teshima, H Mizuta. Numerical analysis of an anomalous current assisted by locally generated deep traps in pn junctions. IEEE Trans Electron Devices, 46, 1159(1999).

    [47] S Shen, Y Zhang, D Yoo et al. Performance of deep ultraviolet GaN avalanche photodiodes grown by MOCVD. IEEE Photon Technol Lett, 19, 1744(2007).

    [48] S Yang, D Zhou, W Xu et al. 4H-SiC ultraviolet avalanche photodiodes with small gain slope and enhanced fill factor. IEEE Photonics J, 9, 1(2017).

    [49] H Liu, D Mcintosh, X Bai et al. 4H-SiC PIN recessed-window avalanche photodiode with high quantum efficiency. IEEE Photon Technol Lett, 20, 1551(2008).

    [50] X Cai, D Zhou, S Yang et al. 4H-SiC SACM avalanche photodiode with low breakdown voltage and high UV detection efficiency. IEEE Photonics J, 8, 1(2016).

    [51] H Cha, S Soloviev, S Zelakiewicz et al. Temperature dependent characteristics of nonreach-through 4H-SiC separate absorption and multiplication APDs for UV detection. IEEE Sens J, 8, 233(2008).

    [52] H Cha, S Soloviev, G Dunne et al. Comparison of 4H-SiC separate absorption and multiplication region avalanche photodiodes structures for UV detection. Proc 5th IEEE Conf Sensors, 5, 14(2006).

    [53] A Vert, S Soloviev, J Fronheiser et al. Solar-blind 4H-SiC single-photon avalanche diode operating in Geiger Mode. IEEE Photon Technol Lett, 20, 1587(2008).

    [54] S I Soloviev, A V Vert, J Fronheiser et al. Solar-blind 4H-SiC avalanche photodiodes. Mater Sci Forum, 615–617, 873(2009).

    [55] W Sung, A Q Huang, B J Baliga. Bevel junction termination extension-a new edge termination technique for 4H-SiC high-voltage devices. IEEE Electron Device Lett, 36, 594(2015).

    [56] Q Zhang, R Callanan, M K Das et al. SiC power devices for microgrids. IEEE Trans Power Electron, 25, 2889(2010).

    [57] S Yang, D Zhou, H Lu et al. 4H-SiC p–i–n ultraviolet avalanche photodiodes obtained by Al implantation. IEEE Photon Technol Lett, 28, 1185(2016).

    [58] S Yang, D Zhou, H Lu et al. High-performance 4H-SiC p–i–n ultraviolet photodiode with p layer formed by Al implantation. IEEE Photon Technol Lett, 28, 1189(2016).

    [59] A Sciuto, M Mazzillo, P Lenzi et al. Fully planar 4H-SiC avalanche photodiode with low breakdown voltage. IEEE Sens J, 17, 4460(2017).

    [60] X Y Guo, A L Beck, J C Campbell et al. Spatial nonuniformity of 4H-SiC avalanche photodiodes at high gain. IEEE J Quantum Elect, 41, 1213(2005).

    [61] X Cai, C Wu, H Lu et al. Single photon counting spatial uniformity of 4H-SiC APD characterized by SNOM-based mapping system. IEEE Photon Technol Lett, 29, 1603(2017).

    [62] C Banc, E Bano, T Ouisse et al. Photon emission analysis of defect-free 4H-SiC pn diodes in avalanche regime. Mater Sci Forum, 389–393, 1293(2002).

    [63] S I Soloviev, P M Sandvik, A Vertiatchikh et al. Observation of luminescence from defects in 4H-SiC APDs operating in avalanche breakdown. Mater Sci Forum, 600–603, 1211(2008).

    [64] L Su, X Cai, H Lu et al. Spatial non-uniform hot carrier luminescence from 4H-SiC p–i–n avalanche photodiodes. IEEE Photon Technol Lett, 31, 447(2019).

    [65] T Hatakeyama, T Watanabe, T Shinohe et al. Impact ionization coefficients of 4H silicon carbide. Appl Phys Lett, 85, 1380(2004).

    [66] E Bellotti, H Nilsson, K F Brennan et al. Monte Carlo calculation of hole initiated impact ionization in 4H phase SiC. J Appl Phys, 87, 3864(2000).

    [67] M Hjelm, H Nilsson, A Martinez et al. Monte Carlo study of high-field carrier transport in 4H-SiC including band-to-band tunneling. J Appl Phys, 93, 1099(2003).

    Linlin Su, Dong Zhou, Hai Lu, Rong Zhang, Youdou Zheng. Recent progress of SiC UV single photon counting avalanche photodiodes[J]. Journal of Semiconductors, 2019, 40(12): 121802
    Download Citation