• Laser & Optoelectronics Progress
  • Vol. 57, Issue 20, 200001 (2020)
Kai Wen1, Ying Ma1, Meiling Zhang1, Yu Wang1, Chi Fu1, Juanjuan Zheng1, Lixin Liu1, Peng Gao1、*, and Baoli Yao2
Author Affiliations
  • 1School of Physics and Optoelectronic Engineering, Xidian University, Xi'an, Shaanxi 710071, China
  • 2State Key Laboratory of Transient Optics and Photonics, Xi'an Institute of Optics and Precision Mechanics, Chinese Academy of Sciences, Xi'an, Shaanxi 710119, China
  • show less
    DOI: 10.3788/LOP57.200001 Cite this Article Set citation alerts
    Kai Wen, Ying Ma, Meiling Zhang, Yu Wang, Chi Fu, Juanjuan Zheng, Lixin Liu, Peng Gao, Baoli Yao. Quantitative Phase Microscopy with High Stability[J]. Laser & Optoelectronics Progress, 2020, 57(20): 200001 Copy Citation Text show less
    References

    [1] Gabor D. A new microscopic principle[J]. Nature, 161, 777-778(1948).

    [2] Schnars U, Juptner W. Direct recording of holograms by a CCD target and numerical reconstruction[J]. Applied Optics, 33, 179-181(1994).

    [3] Lin Y C, Chen H C, Tu H Y et al. Optically driven full-angle sample rotation for tomographic imaging in digital holographic microscopy[J]. Optics Letters, 42, 1321-1324(2017).

    [4] Neutsch K. Gö-ring L, Tranelis M J, et al. Three-dimensional particle localization with common-path digital holographic microscopy[J]. Proceedings of SPIE, 1094, 109440J(2019).

    [5] Kreis T. Handbook of holographic interferometry[M]. New Jersey: Wiley(2004).

    [6] Geng J. Three-dimensional display technologies[J]. Advances in Optics and Photonics, 5, 456-535(2013).

    [7] Hasegawa S, Hayasaki Y, Nishida N. Holographic femtosecond laser processing with multiplexed phase Fresnel lenses[J]. Optics Letters, 31, 1705-1707(2006).

    [8] Lin X, Hao J Y, Wang K et al. Frequency expanded non-interferometric phase retrieval for holographic data storage[J]. Optics Express, 28, 511-518(2020).

    [9] Yaroslavsky L. Digital holography and digital image processing: principles, methods, algorithms[M]. New York: Springer Science & Business Media(2013).

    [10] Li S, Wang D, Lu Y T. Method for improving imaging resolution of digital holographic adaptive optical system[J]. Chinese Journal of Lasers, 46, 0709001(2019).

    [11] Yao L C, Wu X C, Lin X D et al. Measurement of burning biomass particles via high-speed digital holography[J]. Laser & Optoelectronics Progress, 56, 100901(2019).

    [12] Sutkowski M, Kujawińska M. Application of liquid crystal (LC) devices for optoelectronic reconstruction of digitally stored holograms[J]. Optics and Lasers in Engineering, 33, 191-201(2000).

    [13] Kohler C, Schwab X, Osten W. Optimally tuned spatial light modulators for digital holography[J]. Applied Optics, 45, 960-967(2006).

    [14] Zwick S, Haist T, Warber M et al. Dynamic holography using pixelated light modulators[J]. Applied Optics, 49, F47-F58(2010).

    [15] Reicherter M, Haist T, Wagemann E U et al. Optical particle trapping with computer-generated holograms written on a liquid-crystal display[J]. Optics Letters, 24, 608-610(1999).

    [16] DaneshPanah M, Zwick S, Schaal F et al. 3D holographic imaging and trapping for non-invasive cell identification and tracking[J]. Journal of Display Technology, 6, 490-499(2010).

    [17] Yu H Q, Jia S H, Dong J et al. Phase curvature compensation in digital holographic microscopy based on phase gradient fitting and optimization[J]. Journal of the Optical Society of America A, 36, D1-D6(2019).

    [18] Liu S, Lian Q S, Xu Z P. Phase aberration compensation for digital holographic microscopy based on double fitting and background segmentation[J]. Optics and Lasers in Engineering, 115, 238-242(2019).

    [19] Maurer C, Jesacher A, Bernet S et al. What spatial light modulators can do for optical microscopy[J]. Laser & Photonics Reviews, 5, 81-101(2011).

    [20] Haist T, Hasler M, Osten W et al. Programmable microscopy[M]. ∥ Bahram J, Enrique T, Pedro A. Multi-dimensional imaging. Chichester: John Wiley & Sons, Ltd., 153-173(2014).

    [21] Marquet P, Depeursinge C. Digital holographic microscopy: a new imaging technique to quantitatively explore cell dynamics with nanometer sensitivity[M]. ∥Multi-dimensional imaging. Chichester: John Wiley & Sons, Ltd., 197-223(2014).

    [22] Onural L, Yaraş F, Kang H. Digital holographic three-dimensional video displays[J]. Proceedings of the IEEE, 99, 576-589(2011).

    [23] Lee B, Kim Y. Three-dimensional display and imaging: status and prospects[M]. ∥Optical imaging and metrology. Weinheim: Wiley-VCH Verlag GmbH & Co. KGaA, 31-56(2012).

    [24] Osten W, Baumbach T, Juptner W. Comparative digital holography[J]. Optics Letters, 27, 1764-1766(2002).

    [25] Baumbach T. Osten W, von Kopylow C, et al. Remote metrology by comparative digital holography[J]. Applied Optics, 45, 925-934(2006).

    [26] Mico V, Zheng J J, Garcia J et al. Resolution enhancement in quantitative phase microscopy[J]. Advances in Optics and Photonics, 11, 135-214(2019).

    [27] Yaghoubi S H S, Ebrahimi S, Dashtdar M et al. Common-path, single-shot phase-shifting digital holographic microscopy using a Ronchi ruling[J]. Applied Physics Letters, 114, 183701(2019).

    [28] Charriere F, Kuhn J, Colomb T et al. Characterization of microlenses by digital holographic microscopy[J]. Applied Optics, 45, 829-835(2006).

    [29] Kemper B, von Bally G. Digital holographic microscopy for live cell applications and technical inspection[J]. Applied Optics, 47, A52-A61(2008).

    [30] Park Y, Choi W, Yaqoob Z et al. Speckle-field digital holographic microscopy[J]. Optics Express, 17, 12285-12292(2009).

    [31] Bertaux N, Frauel Y, Réfrégier P et al. Speckle removal using a maximum-likelihood technique with isoline gray-level regularization[J]. Journal of the Optical Society of America A, 21, 2283-2291(2004).

    [32] Zhao J L, Yan X B, Sun W W et al. Resolution improvement of digital holographic images based on angular multiplexing with incoherent beams in orthogonal polarization states[J]. Optics Letters, 35, 3519-3521(2010).

    [33] Jiang H Z, Zhao J L, Di J L et al. Reconstruction of synthetic aperture digital lensless Fourier transform hologram by use of the screen-division method[J]. Acta Optica Sinica, 29, 3304-3309(2009).

    [34] Cai L, Liu Q, Yang X. Phase-shift extraction and wave-front reconstruction in phase-shifting interferometry with arbitrary phase steps[J]. Optics Letters, 28, 1808-1810(2003).

    [35] Meng X, Cai L, Xu X et al. Two-step phase-shifting interferometry and its application in image encryption[J]. Optics Letters, 31, 1414-1416(2006).

    [36] Wang H Y, Liu J B, Wang D Y et al. Autofocus for numerical reconstruction in digital holographic microscopy[J]. Acta Optica Sinica, 28, 343-347(2008).

    [37] Liu C G, Wang D Y, Zhang Y Z et al. Derivatives-based autofocus algorithms for the digital holographic imaging[J]. Chinese Journal of Lasers, 36, 2989-2996(2009).

    [38] Yuan C J, Zhai H C, Wang X L et al. Lensless digital holography with short-coherence light source for three-dimensional surface contouring of reflecting micro-object[J]. Optics Communications, 270, 176-179(2007).

    [39] Yan H, Long J, Liu C Y et al. Review of the development and application of deformation measurement based on digital holography and digital speckle interferometry[J]. Infrared and Laser Engineering, 48, 0603010(2019).

    [40] Gao P, Yao B L, Min J W et al. Parallel two-step phase-shifting point-diffraction interferometry for microscopy based on a pair of cube beamsplitters[J]. Optics Express, 19, 1930-1935(2011).

    [41] Min J W, Yao B L, Gao P et al. Parallel phase-shifting interferometry based on Michelson-like architecture[J]. Applied Optics, 49, 6612-6616(2010).

    [42] Qu W J, Liu D A, Zhi Y N et al. Visualization of domain inversion region characteristics in RuO2∶LiNbO3 crystal by digital holographic interferometry[J]. Acta Physica Sinica, 55, 4276-4281(2006).

    [43] Li J, Peng Z. Statistic optics discussion on the formula of digital holographic 3D surface profiling measurement[J]. Measurement, 43, 381-384(2010).

    [44] Qian X F, Dong K P, Zhang L et al. Study on cells by use of reflecting digital holographic microscopy[J]. Acta Photonica Sinica, 36, 1318-1321(2007).

    [45] Wang X G, Zhao D M, Jing F et al. Information synthesis (complex amplitude addition and subtraction) and encryption with digital holography and virtual optics[J]. Optics Express, 14, 1476-1486(2006).

    [46] Liang M D, Chen L, Lin W T et al. A speckle noise reduction method for lensless Fourier transform digital holography[J]. Laser & Optoelectronics Progress, 55, 110901(2018).

    [47] Popescu G, Ikeda T, Goda K et al. Optical measurement of cell membrane tension[J]. Physical Review Letters, 97, 218101(2006).

    [49] de Groot P J. Phase-shift calibration errors in interferometers with spherical Fizeau cavities[J]. Applied Optics, 34, 2856-2863(1995).

    [50] Schwider J. Fizeau-type multi-pass shack-hartmann-test[J]. Optics Express, 16, 362-372(2008).

    [51] Zhu W H, Chen L, Yang Y et al. Advanced simultaneous phase-shifting Fizeau interferometer[J]. Optics & Laser Technology, 111, 134-139(2019).

    [52] Abdelsalam D G, Yao B L, Gao P et al. Single-shot parallel four-step phase shifting using on-axis Fizeau interferometry[J]. Applied Optics, 51, 4891-4895(2012).

    [54] Dobroiu A, Sakai H, Ootaki H et al. Coaxial Mirau interferometer[J]. Optics Letters, 27, 1153-1155(2002).

    [55] Bhushan B, Wyant J C, Koliopoulos C L. Measurement of surface topography of magnetic tapes by Mirau interferometry[J]. Applied Optics, 24, 1489-1497(1985).

    [56] Mehta D S, Sharma A, Dubey V et al. Quantitative phase imaging of biological cells and tissues using singleshot white light interference microscopy and phase subtraction method for extended range of measurement[J]. Proceedings of SPIE, 9718, 971828(2016).

    [57] Popescu G, Ikeda T, Dasari R R et al. Diffraction phase microscopy for quantifying cell structure and dynamics[J]. Optics Letters, 31, 775-777(2006).

    [58] Akondi V, Jewel A R, Vohnsen B. Digital phase-shifting point diffraction interferometer[J]. Optics Letters, 39, 1641-1644(2014).

    [59] Wang D, Xie Z M, Wang C et al. Probe misalignment calibration in fiber point-diffraction interferometer[J]. Optics Express, 27, 34312-34322(2019).

    [60] Shaked N T, Zhu Y Z, Rinehart M T et al. Two-step-only phase-shifting interferometry with optimized detector bandwidth for microscopy of live cells[J]. Optics Express, 17, 15585-15591(2009).

    [61] Gao P, Harder I, Nercissian V et al. Phase-shifting point-diffraction interferometry with common-path and in-line configuration for microscopy[J]. Optics Letters, 35, 712-714(2010).

    [62] Ronchi V. On the phase grating interferometer[J]. Applied Optics, 4, 1041-1042(1965).

    [63] Mico V, Zalevsky Z, Garcia J. Superresolved common-path phase-shifting digital inline holographic microscopy using a spatial light modulator[J]. Optics Letters, 37, 4988-4990(2012).

    [64] Mico V, Ferreira C, Zalevsky Z et al. Spatially-multiplexed interferometric microscopy (SMIM): converting a standard microscope into a holographic one[J]. Optics Express, 22, 14929-14943(2014).

    [65] Picazo-Bueno J Á, Micó V. Opposed-view spatially multiplexed interferometric microscopy[J]. Journal of Optics, 21, 035701(2019).

    [66] Mico V, Zalevsky Z, Garcia J. Superresolution optical system by common-path interferometry[J]. Optics Express, 14, 5168-5177(2006).

    [67] Gao P, Pedrini G, Osten W. Structured illumination for resolution enhancement and autofocusing in digital holographic microscopy[J]. Optics Letters, 38, 1328-1330(2013).

    [68] Platt B C, Shack R. History and principles of shack-hartmann wavefront sensing[J]. Journal of Refractive Surgery, 17, S573-S577(2001).

    [69] Rativa D, de Araujo R E, Gomes A S et al. Hartmann-Shack wavefront sensing for nonlinear materials characterization[J]. Optics Express, 17, 22047-22053(2009).

    [70] Laude V, Olivier S, Dirson C et al. Hartmann wave-front scanner[J]. Optics Letters, 24, 1796-1798(1999).

    [71] Rimmer M P, Wyant J C. Evaluation of large aberrations using a lateral-shear interferometer having variable shear[J]. Applied Optics, 14, 142-150(1975).

    [72] Liu X J, Gao Y S. Surface roughness profile measurement using shearing microscope interference method[J]. China Measurement Technology, 30, 3-5(2004).

    [73] Almoro P F, Pedrini G, Osten W. Complete wavefront reconstruction using sequential intensity measurements of a volume speckle field[J]. Applied Optics, 45, 8596-8605(2006).

    [74] Pedrini G, Osten W, Zhang Y. Wave-front reconstruction from a sequence of interferograms recorded at different planes[J]. Optics Letters, 30, 833-835(2005).

    [75] Bao P, Zhang F C, Pedrini G et al. Phase retrieval using multiple illumination wavelengths[J]. Optics Letters, 33, 309-311(2008).

    [76] Faulkner H M L, Rodenburg J M. Movable aperture lensless transmission microscopy: a novel phase retrieval algorithm[J]. Physical Review Letters, 93, 023903(2004).

    [77] Rodenburg J M. Faulkner H M L. A phase retrieval algorithm for shifting illumination[J]. Applied Physics Letters, 85, 4795-4797(2004).

    [78] Zhang F C, Pedrini G, Osten W. Phase retrieval of arbitrary complex-valued fields through aperture-plane modulation[J]. Physical Review A, 75, 043805(2007).

    [79] Liu Y J, Chen B, Li E et al. Phase retrieval in X-ray imaging based on using structured illumination[J]. Physical Review A, 78, 023817(2008).

    [80] Gao P, Pedrini G, Zuo C et al. Phase retrieval using spatially modulated illumination[J]. Optics Letters, 39, 3615-3618(2014).

    [81] Zernike F. Phase contrast, a new method for the microscopic observation of transparent objects part II[J]. Physica, 9, 974-986(1942).

    [82] Zheng J J, Yao B L, Gao P et al. Phase contrast microscopy with fringe contrast adjustable by using grating-based phase-shifter[J]. Optics Express, 20, 16077-16082(2012).

    [83] Maurer C, Jesacher A, Bernet S et al. Phase contrast microscopy with full numerical aperture illumination[J]. Optics Express, 16, 19821-19829(2008).

    [84] Gao P, Yao B L, Harder I et al. Phase-shifting Zernike phase contrast microscopy for quantitative phase measurement[J]. Optics Letters, 36, 4305-4307(2011).

    [85] Latychevskaia T, Fink H. Solution to the twin image problem in holography[J]. Physical Review Letters, 98, 233901(2007).

    [86] Rong L, Li Y, Liu S et al. Iterative solution to twin image problem in in-line digital holography[J]. Optics and Lasers in Engineering, 51, 553-559(2013).

    [87] Gaur C, Mohan B, Khare K. Sparsity-assisted solution to the twin image problem in phase retrieval[J]. Journal of the Optical Society of America A-Optics Image Science and Vision, 32, 1922-1927(2015).

    [88] Cho C, Choi B, Kang H et al. Numerical twin image suppression by nonlinear segmentation mask in digital holography[J]. Optics Express, 20, 22454-22464(2012).

    [89] Rivenson Y, Zhang Y B, Gunaydin H et al. Phase recovery and holographic image reconstruction using deep learning in neural networks[J]. Light-Science & Applications, 7, 17141(2018).

    [90] Zhang W H, Cao L C, Brady D J et al. Twin-image-free holography: a compressive sensing approach[J]. Physical Review Letters, 121, 093902(2018).

    [91] Yu Y J, Lin X Y, Wu X Y. Tomographic reconstruction of magnified in-line hologram based on compressive sensing[J]. Infrared and Laser Engineering, 48, 0603017(2019).

    [92] Popescu G, Deflores L P, Vaughan J C et al. Fourier phase microscopy for investigation of biological structures and dynamics[J]. Optics Letters, 29, 2503-2505(2004).

    [93] North-Morris M B, Millerd J E, Brock N J et al. Phase-shifting multiwavelength dynamic interferometer[J]. Proceedings of SPIE, 5531, 64-75(2004).

    [94] Novak M, Millerd J E, Brock N et al. Analysis of a micropolarizer array-based simultaneous phase-shifting interferometer[J]. Applied Optics, 44, 6861-6868(2005).

    [95] Millerd J, Brock N, Hayes J et al. Pixelated phase-mask dynamic interferometers[M]. Berlin/Heidelberg: Springer-Verlag, 640-647(2005).

    [96] Millerd J E, Brock N J, Hayes J B et al. Instantaneous phase-shift point-diffraction interferometer[J]. Proceedings of SPIE, 5531, 264-272(2004).

    [97] Jensen M A, Nordin G P. Finite-aperture wire grid polarizers[J]. Journal of the Optical Society of America A, 17, 2191-2198(2000).

    [98] Stenkamp B, Abraham M, Ehrfeld W et al. Grid polarizer for the visible spectral region[J]. Proceedings of SPIE, 2213, 288-296(1994).

    [99] Clausnitzer T, Fuchs H J, Kley E B et al. Polarizing metal stripe gratings for a micro-optical polarimeter[J]. Proceedings of SPIE, 5183, 8-15(2003).

    [100] Wang Z, Millet L, Mir M et al. Spatial light interference microscopy (SLIM)[J]. Optics Express, 19, 1016-1026(2011).

    [101] Ma Y, Guo S Y, Pan Y et al. Quantitative phase microscopy with enhanced contrast and improved resolution through ultra-oblique illumination (UO-QPM)[J]. Journal of Biophotonics, 12, e201900011(2019).

    [102] Nguyen T H, Popescu G. Spatial Light Interference Microscopy (SLIM) using twisted-nematic liquid-crystal modulation[J]. Biomedical Optics Express, 4, 1571-1583(2013).

    [103] Majeed H, Nguyen T H, Kandel M E et al. Label-free quantitative evaluation of breast tissue using Spatial Light Interference Microscopy (SLIM)[J]. Scientific Reports, 8, 6875(2018).

    Kai Wen, Ying Ma, Meiling Zhang, Yu Wang, Chi Fu, Juanjuan Zheng, Lixin Liu, Peng Gao, Baoli Yao. Quantitative Phase Microscopy with High Stability[J]. Laser & Optoelectronics Progress, 2020, 57(20): 200001
    Download Citation