• Journal of Semiconductors
  • Vol. 40, Issue 10, 101305 (2019)
Wenyu Yang1、2、3, Yajie Li1、2、3, Fangyuan Meng1、2、3, Hongyan Yu1、2、3, Mengqi Wang1、2、3, Pengfei Wang1、2、3, Guangzhen Luo1、2、3, Xuliang Zhou1、2、3, and Jiaoqing Pan1、2、3
Author Affiliations
  • 1Key Laboratory of Semiconductor Materials Science, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China
  • 2Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
  • 3Beijing Key Laboratory of Low Dimensional Semiconductor Materials and Devices, Beijing 100083, China
  • show less
    DOI: 10.1088/1674-4926/40/10/101305 Cite this Article
    Wenyu Yang, Yajie Li, Fangyuan Meng, Hongyan Yu, Mengqi Wang, Pengfei Wang, Guangzhen Luo, Xuliang Zhou, Jiaoqing Pan. III–V compound materials and lasers on silicon[J]. Journal of Semiconductors, 2019, 40(10): 101305 Copy Citation Text show less
    References

    [1] S Kim, M Yokoyama, N Taoka et al. Self-aligned metal source/drain InxGa1–xAs n-metal–oxide–semiconductor field-effect transistors using Ni–InGaAs Alloy. Appl Phys Lett, 98, 21(2011).

    [2]

    [3] C G Lee, X D Wang, J W Kysar et al. Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science, 321, 385(2008).

    [4] A K Geim, K S Novoselov. The rise of graphene. Nat Mater, 6, 183(2009).

    [5]

    [6] V R Almeida, C A Barrios, R R Panepucci et al. All-optical control of light on a silicon chip. Nature, 431, 1081(2004).

    [7] J Michel, J Liu, L C Kimerling. High-performance Ge-on-Si photodetectors. Nat Photonics, 4, 527(2000).

    [8] C Sun, M T Wade, Y Lee et al. Single-chip microprocessor that communicates directly using light. Nature, 528, 534(2015).

    [9] Y Vlasov, W M J Green, F J Xia. High-throughput silicon nanophotonic wavelength-insensitive switch for on-chip optical networks. Nat Photonics, 2, 1(2008).

    [10]

    [11] R Won, M J Paniccia. Integrating silicon photonics. Nat Photonics, 4, 498(2010).

    [12] L Andrew, J Qi, T Mingchu et al. Continuous-wave InAs/GaAs quantum-dot laser diodes monolithically grown on Si substrate with low threshold current densities. Opt Express, 20, 22181(2012).

    [13] R D Bringans, D K Biegelsen, L Swartz. Atomic-step rearrangement on Si(100) by interaction with arsenic and the implication for GaAs-on-Si epitaxy. Phys Rev, 44, 3054(1991).

    [14]

    [15] H Mori, M Tachikawa, M Sugo et al. GaAs heteroepitaxy on an epitaxial Si surface with a low-temperature process. Appl Phys Lett, 63, 1963(1993).

    [16] S Sakai, T Soga, M Takeyasu et al. Room-temperature laser operation of AlGaAs/GaAs double heterostructures fabricated on Si substrates by metalorganic chemical vapor deposition. Appl Phys Lett, 48, 413(1986).

    [17]

    [18] S M Ting, E A Fitzgerald. Metal-organic chemical vapor deposition of single domain GaAs on Ge/GexSi1–x/Si and Ge substrates. J Appl Phys, 87, 2618(2000).

    [19] T H Windhorn, G M Metze, B Y Tsaur et al. AlGaAs double-heterostructure diode lasers fabricated on a monolithic GaAs/Si substrate. Appl Phys Lett, 45, 309(1984).

    [20] Y Takano, M Hisaka, N Fujii et al. Reduction of threading dislocations by InGaAs interlayer in GaAs layers grown on Si substrates. Appl Phys Lett, 73, 2917(1998).

    [21] K Asai, H Katahama, Y Shiba. Dynamical formation process of pure edge misfit dislocations at GaAs/Si interfaces in post-annealing. J Appl Phys, 33, 4843(1994).

    [22] Y Takagi, H Yonezu, Y Hachiya et al. Reduction mechanism of threading dislocation density in GaAs epilayer grown on Si substrate by high-temperature annealing. Jpn J Appl Phys, 33, 3368(1994).

    [23] Y Kohama, Y Kadota, Y Ohmachi. InP grown on Si substrates with GaP buffer layers by metalorganic chemical vapor deposition. Jpn J Appl Phys, 28, 1337(1989).

    [24] R Fischer, W Kopp, H Morkoc et al. Low threshold laser operation at room temperature in GaAs/(Al, Ga)As structures grown directly on (100)Si. Appl Phys Lett, 48, 1360(1986).

    [25] X L Zhou, J Q Pan, R R Liang et al. Epitaxy of GaAs thin film with low defect density and smooth surface on Si substrate. J Semicond, 35, 073002(2014).

    [26] Y Li, L J Giling. A closer study on the self-annihilation of antiphase boundaries in GaAs epilayers. J Cryst Growth, 163, 203(1996).

    [27] M Tang, S Chen, J Wu et al. 1.3-μm InAs/GaAs quantum-dot lasers monolithically grown on Si substrates using InAlAs/GaAs dislocation filter layers. Opt Express, 22, 11528(2014).

    [28] M Sugo, H Mori, Y Sakai et al. Stable cw operation at room temperature of a 1.5-μm wavelength multiple quantum well laser on a Si substrate. Appl Phys Lett, 60, 472(1992).

    [29] H Liu, T Wang, J Qi et al. Long-wavelength InAs/GaAs quantum-dot laser diode monolithically grown on Ge substrate. Nat Photonics, 5, 416(2011).

    [30] S Chen, W Li, J Wu et al. Electrically pumped continuous-wave III–V quantum dot lasers on silicon. Nat Photonics, 10, 307(2016).

    [31] K Jinkwan, J Bongyong, L Joohang et al. All MBE grown InAs/GaAs quantum dot lasers on on-axis Si (001). Opt Express, 26, 11568(2018).

    [32] J C Norman, D Jung, Z Zhang et al. A review of high-performance quantum dot lasers on silicon. IEEE J Quantum Electron, 55, 1(2019).

    [33] D Jung, R Herrick, J Norman et al. Impact of threading dislocation density on the lifetime of InAs quantum dot lasers on Si. Appl Phys Lett, 112, 153507(2018).

    [34] A Y Liu, Y C Zhang, J Norman et al. High performance continuous wave 1.3 μm quantum dot lasers on silicon. Appl Phys Lett, 104, 041104(2014).

    [35] S Zhu, B Shi, Q Li et al. 1.5 μm quantum-dot diode lasers directly grown on CMOS-standard (001) silicon. Appl Phys Lett, 113, 221103(2018).

    [36] Y Wan, L Qiang, A Y Liu et al. Sub-wavelength InAs quantum dot micro-disk lasers epitaxially grown on exact Si (001) substrates. Appl Phys Lett, 108, 1(2016).

    [37] J Norman, M J Kennedy, J Selvidge et al. Electrically pumped continuous wave quantum dot lasers epitaxially grown on patterned, on-axis (001) Si. Opt Express, 25, 3927(2017).

    [38] J Isenberg, W J Warta. Free carrier absorption in heavily doped silicon layers. Appl Phys Lett, 84, 2265(2004).

    [39] A V Krishnamoorthy, L M F Chirovsky, W S Hobson et al. Vertical-cavity surface-emitting lasers flip-chip bonded to gigabit-per-second CMOS circuits. IEEE Photonics Technol Lett, 11, 128(1999).

    [40] A W Fang, L Erica, Y H Kuo et al. A distributed feedback silicon evanescent laser. Opt Express, 16, 4413(2008).

    [41] A W Fang, P Hyundai, C Oded et al. Electrically pumped hybrid AlGaInAs-silicon evanescent laser. Opt Express, 14, 9203(2006).

    [42] A W Fang, B R Koch, R Jones et al. A distributed Bragg reflector silicon evanescent laser. IEEE Photonics Technol Lett, 20, 1667(2008).

    [43] A D Groote, P Cardile, A Z Subramanian et al. Transfer-printing-based integration of single-mode waveguide-coupled III–V-on-silicon broadband light emitters. Opt Express, 24, 13754(2016).

    [44] P F Hyundai, F K Alexander, K Satoshi et al. Hybrid silicon evanescent laser fabricated with a silicon waveguide and III–V offset quantum wells. Opt Express, 13, 9460(2005).

    [45] J Justice, C Bower, M Meitl et al. Wafer-scale integration of group III–V lasers on silicon using transfer printing of epitaxial layers. Nat Photonics, 6, 612(2012).

    [46] D Pasquariello, K J Hjort. Plasma-assisted InP-to-Si low temperature wafer bonding. IEEE J Sel Top Quantum Electron, 8, 118(2002).

    [47] S Keyvaninia, S Verstuyft, L Van Landschoot et al. Heterogeneously integrated III–V/silicon distributed feedback lasers. Opt Lett, 38, 5434(2013).

    [48] S Sui, M T Tang, Y Yang et al. Sixteen-wavelength hybrid AlGaInAs/Si microdisk laser array. IEEE J Quantum Electron, 51, 2600108(2015).

    [49] D Andrijasevic, M Austerer, A M Andrews et al. Hybrid integration of GaAs quantum cascade lasers with Si substrates by thermocompression bonding. Appl Phys Lett, 92, 157(2008).

    [50] L Yuan, L Tao, H Yu et al. Hybrid InGaAsP-Si evanescent laser by selective-area metal-bonding method. IEEE Photonics Technol Lett, 25, 1180(2013).

    [51] L Yuan, L Tao, W Chen et al. A buried ridge stripe structure InGaAsP-Si hybrid laser. IEEE Photonics Technol Lett, 27, 352(2015).

    [52] T Hong, Y Wang, H Y Yu et al. A Selective area metal bonding method for Si photonics light sources. IEEE International Conference on Group IV Photonics(2010).

    [53] H Yu, L Yuan, L Tao et al. 1550 nm evanescent hybrid InGaAsP-Si laser with buried ridge stripe structure. IEEE Photonics Technol Lett, 28, 1146(2016).

    [54] T A Langdo, C W Leitz, M T Currie et al. High quality Ge on Si by epitaxial necking. Appl Phys Lett, 76, 3700(2000).

    [55] Q Li, S M Han, S R J Brueck et al. Selective growth of Ge on Si(100) through vias of SiO2 nanotemplate using solid source molecular beam epitaxy. Appl Phys Lett, 83, 5032(2003).

    [56] R J Matyi, H Shichijo, H L Tsai et al. Patterned growth of gallium arsenide on silicon. J Vac Sci Technol B, 6, 699(1988).

    [57] K Woodbridge, P Barnes, R Murray et al. GaAs / AlGaAs pin MQW structures grown on patterned Si substrates. J Cryst Growth, 127, 112(1993).

    [58] J S Park, J Bai, M Curtin et al. Defect reduction of selective Ge epitaxy in trenches on Si(001) substrates using aspect ratio trapping. Appl Phys Lett, 90, 3344(2007).

    [59] J Z Li, J Bai, J S Park et al. Defect reduction of GaAs epitaxy on Si (001) using selective aspect ratio trapping. Appl Phys Lett, 91, 2293(2007).

    [60] S Li, X Zhou, X Kong et al. Evaluation of growth mode and optimization of growth parameters for GaAs epitaxy in V-shaped. J Cryst Growth, 426, 147(2015).

    [61] S Y Li, X L Zhou, X T Kong et al. Selective area growth of GaAs in V-grooved trenches on Si (001) substrates by aspect-ratio. Chin Phys Lett, 32, 028101(2015).

    [62] G Wang, M R Leys, R Loo et al. Selective area growth of high quality InP on Si (001) substrates. Appl Phys Lett, 97, 1(2010).

    [63] M Paladugu, C Merckling, R Loo et al. Site selective integration of III–V materials on Si for nanoscale logic and photonic devices. Cryst Growth Des, 12, 4696(2012).

    [64] S Li, X Zhou, X Kong et al. Catalyst-free growth of InP nanowires on patterned Si (001) substrate by using GaAs buffer layer. J Cryst Growth, 440, 81(2016).

    [65] S Li, X Zhou, M Li et al. Ridge InGaAs/InP multi-quantum-well selective growth in nanoscale trenches on Si (001) substrate. Appl Phys Lett, 108, 021902(2016).

    [66] Z Wang, B Tian, M Pantouvaki et al. Room-temperature InP distributed feedback laser array directly grown on silicon. Nat Photonics, 9, 837(2015).

    [67] B Tian, C Merckling, D V Thourhout et al. Room temperature InGaAs/InP distributed feedback laser directly grown on silicon. Lasers & Electro-optics(2016).

    [68] B Kunert, W Guo, Y Mols et al. III/V nano ridge structures for optical applications on patterned 300 mm silicon substrate. Appl Phys Lett, 109, 511(2016).

    [69] Y Han, Q Li, u S Zhu et al. Continuous-wave lasing from InP/InGaAs nanoridges at telecommunication wavelengths. Appl Phys Lett, 111, 212101(2017).

    [70] Y Li, M Wang, X Zhou et al. InGaAs/InP multi-quantum-well nanowires with a lower optical leakage loss on V-groove-patterned SOI substrates. Opt Express, 27, 494(2019).

    [71] Y Han, W K Ng, Y Xue et al. Telecom InP/InGaAs nanolaser array directly grown on (001) silicon-on-insulator. Opt Lett, 44, 767(2019).

    Wenyu Yang, Yajie Li, Fangyuan Meng, Hongyan Yu, Mengqi Wang, Pengfei Wang, Guangzhen Luo, Xuliang Zhou, Jiaoqing Pan. III–V compound materials and lasers on silicon[J]. Journal of Semiconductors, 2019, 40(10): 101305
    Download Citation