• Journal of Semiconductors
  • Vol. 40, Issue 10, 101801 (2019)
Jun Hu1、2, Hongyuan Wei1、2, Shaoyan Yang1、2, Chengming Li1、2, Huijie Li1、2, Xianglin Liu1、2, Lianshan Wang1、2, and Zhanguo Wang1、2
Author Affiliations
  • 1Key Laboratory of Semiconductor Materials Science, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China
  • 2Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
  • show less
    DOI: 10.1088/1674-4926/40/10/101801 Cite this Article
    Jun Hu, Hongyuan Wei, Shaoyan Yang, Chengming Li, Huijie Li, Xianglin Liu, Lianshan Wang, Zhanguo Wang. Hydride vapor phase epitaxy for gallium nitride substrate[J]. Journal of Semiconductors, 2019, 40(10): 101801 Copy Citation Text show less
    References

    [1] J A Van Vechten. Quantum dielectric theory of electronegativity in covalent systems. III. pressure-temperature phase diagrams, heats of mixing, and distribution coefficients. Phys Rev B, 7, 1479(1973).

    [2] J Karpiński, J Jun, S Porowski. Equilibrium pressure of N2 over GaN and high pressure solution growth of GaN. J Cryst Growth, 66, 1(1984).

    [3] M Leszcynski, I Grzegory, M Bockowski. X-ray examination of GaN single crystals grown at high hydrostatic pressure. J Cryst Growth, 126, 601(1993).

    [4] H Yamane, M Shimada, S J Clarke et al. Preparation of GaN single crystals using a Na flux. Chem Mater, 9, 413(1997).

    [5] K Murakami, D Matsuo, H Imabayashi et al. Effects of solution stirring on the growth of bulk GaN single crystals by Na flux method. Jpn J Appl Phys, 52, 08JA03(2013).

    [6] R Dwiliński, R Doradziński, J Garczyński et al. Excellent crystallinity of truly bulk ammonothermal GaN. J Cryst Growth, 310, 3911(2008).

    [7] D Ehrentraut, R T Pakalapati, D S Kamber et al. High quality, low cost ammonothermal bulk gan substrates. Jpn J Appl Phys, 52, 08JA01(2013).

    [8] M K Kelly, R P Vaudo, V M Phanse et al. Large free-standing GaN substrates by hydride vapor phase epitaxy and laser-induced liftoff. Jpn J Appl Phys, 38, L217(1999).

    [9] K Motoki, T Okahisa, N Matsumoto et al. Preparation of large freestanding GaN substrates by hydride vapor phase epitaxy using GaAs as a starting substrate. Jpn J Appl Phys, 40, L140(2001).

    [10] Y Oshima, T Eri, M Shibata et al. Preparation of freestanding GaN wafers by hydride vapor phase epitaxy with void-assisted separation. Jpn J Appl Phys, 42, L1(2003).

    [11] M Lee, D Mikulik, M Yang et al. Nearly perfect GaN crystal via pit-assisted growth by HVPE. CrystEngComm, 19, 2036(2017).

    [12] T Yoshida, M Imanishi, T Kitamura et al. Development of GaN substrate with a large diameter and small orientation deviation. Phys Status Solidi B, 254, 1600671(2017).

    [13] H P Maruska, J J Tietjen. The preparation and properties of vapor-deposited single-crystal-line GaN. Appl Phys Lett, 15, 327(1969).

    [14] D K Wickenden, K R Faulkner, R W Brander et al. Growth of epitaxial layers of gallium nitride on silicon carbide and corundum substrates. J Cryst Growth, 9, 158(1971).

    [15] W Seifert, G Fitzl, E Butter. Study on the growth rate in VPE of GaN. J Cryst Growth, 52, 257(1981).

    [16] O Parillaud, V Wagner, H J Buehlmann et al. Localized epitaxy of GaN by HVPE on patterned substrates. MRS Int J Nitride Semicond Res, 3, e40(1998).

    [17] E Richter, S Gramlich, A Klein et al. Direct growth of GaN on (0001) sapphire by low pressure hydride vapour phase epitaxy. Phys Status Solidi A, 188, 439(2001).

    [18] C Hennig, E Richter, M Weyers et al. Self-separation of thick two inch GaN layers grown by HVPE on sapphire using epitaxial lateral overgrowth with masks containing tungsten. Phys Status Solidi C, 4, 2638(2007).

    [19] C Wang, C H Anthony, M Seyboth et al. Influence of growth parameters on crack density in thick epitaxially lateral overgrown GaN layers by hydride vapor phase epitaxy. J Cryst Growth, 230, 377(2001).

    [20] C Hemmingsson, P P Paskov, G Pozina et al. Growth of bulk GaN in a vertical hydride vapour phase epitaxy reactor. Superlattices Microstruct, 40, 205(2006).

    [21] E Richter, C Hennig, M Weyers et al. Reactor and growth process optimization for growth of thick GaN layers on sapphire substrates by HVPE. J Cryst Growth, 277, 6(2005).

    [22]

    [23]

    [24] C Hemmingsson, P P Paskov, G Pozina et al. Hydride vapour phase epitaxy growth and characterization of thick GaN using a vertical HVPE reactor. J Cryst Growth, 300, 32(2007).

    [25] E Richter, U Zeimer, S Hagedorn et al. Hydride vapor phase epitaxy of GaN boules using high growth rates. J Cryst Growth, 312, 2537(2010).

    [26] E Richter, M Gründer, B Schineller et al. GaN boules grown by high rate HVPE. Phys Status Solidi C, 8, 1450(2011).

    [27] E Richter, M Gründer, C Netzel et al. Growth of GaN boules via vertical HVPE. J Cryst Growth, 350, 89(2012).

    [28]

    [29]

    [30] H Shin, D B Thomson, R Schlesser et al. High temperature nucleation and growth of GaN crystals from the vapor phase. J Cryst Growth, 241, 404(2002).

    [31] T Bohnen, H Ashraf, Dreumel G W G van et al. Enhanced growth rates and reduced parasitic deposition by the substitution of Cl2 for HCl in GaN HVPE. J Cryst Growth, 2542(2010).

    [32] D Nakamura, T Kimura, K Horibuchi. Halogen-free vapor phase epitaxy for high-rate growth of GaN bulk crystals. Appl Phys Express, 10, 045504(2017).

    [33] D Nakamura, T Kimura. Significant increase in GaN growth rate by halogen-free vapor phase epitaxy with porosity-controlled evaporator. Appl Phys Express, 10, 095503(2017).

    [34] D Nakamura, T Kimura. Ultrahigh-yield growth of GaN via halogen-free vapor-phase epitaxy. Appl Phys Express, 11, 065502(2018).

    [35] T Kimura, K Horibuchi, K Kataoka et al. Macro-defect-free homoepitaxial GaN growth through halogen-free vapor-phase epitaxy on native GaN seeds. J Cryst Growth, 494, 17(2018).

    [36] D Nakamura, A Suzumura, K Shigetoh. Sintered tantalum carbide coatings on graphite substrates: Highly reliable protective coatings for bulk and epitaxial growth. Appl Phys Lett, 106, 082108(2015).

    [37] D Nakamura. Simple and quick enhancement of SiC bulk crystal growth using a newly developed crucible material. Appl Phys Express, 9, 055507(2016).

    [38] D Nakamura, K Shigetoh, A Suzumura. Tantalum carbide coating via wet powder process: From slurry design to practical process tests. J Eur Ceram Soc, 37, 1175(2017).

    [39] D Nakamura, T Kimura, T Narita et al. TaC-coated graphite prepared via a wet ceramic process: Application to CVD susceptors for epitaxial growth of wide-bandgap semiconductors. J Cryst Growth, 478, 163(2017).

    [40] G Lukin, T Schneider, M Barchuk et al. Modified high temperature vapor phase epitaxy for growth of GaN films: Modified HTVPE for growth of GaN films. Phys Status Solidi A, 214, 1600753(2017).

    [41] T Schneider, G Lukin, F Zimmermann et al. Studies on high temperature vapor phase epitaxy of GaN. J Cryst Growth, 468, 212(2017).

    [42] G Lukin, C Röder, M Barchuk et al. Investigation of GaN layers grown by high temperature vapor phase epitaxy: Investigation of GaN layers grown by high temperature vapor phase epitaxy. Phys Status Solidi C, 11, 491(2014).

    [43]

    [44] N Takahashi, R Matsumoto, A Koukitu et al. Vapor phase epitaxy of InxGa1–xN using InCl3, GaCl3 and NH3 sources. Jpn J Appl Phys Part 2-Lett, 36, L601(1997).

    [45] M Topf, G Steude, S Fischer et al. 1998 Low-pressure chemical vapor deposition of GaN epitaxial films. J Cryst Growth, 189/190, 330(1998).

    [46] E Varadarajan, P Puviarasu, J Kumar et al. On the chloride vapor-phase epitaxy growth of GaN and its characterization. J Cryst Growth, 260, 43(2004).

    [47] H Murakami, N Takekawa, A Shiono et al. Tri-halide vapor phase epitaxy of thick GaN using gaseous GaCl3 precursor. J Cryst Growth, 456, 140(2016).

    [48] Y Kumagai, K Takemoto, T Hasegawa et al. Thermodynamics on tri-halide vapor-phase epitaxy of GaN and InxGa1–xN using GaCl3 and InCl3. J Cryst Growth, 231, 57(2001).

    [49] T Yamane, K Hanaoka, H Murakami et al. Tri-halide vapor phase epitaxy of GaN using GaCl3 gas as a group III precursor Phys. Status Solidi C, 8, 1471(2011).

    [50] K Iso, N Takekawa, K Matsuda et al. Tri-halide vapor-phase epitaxy of GaN using GaCl3 on polar, semipolar, and nonpolar substrates. Appl Phys Express, 9, 105501(2016).

    [51] T Yoshida, Y Oshima, K Watanabe et al. Ultrahigh-speed growth of GaN by hydride vapor phase epitaxy. Phys Status Solidi C, 8, 2110(2011).

    [52]

    [53] N Takekawa, N Hayashida, D Ohzeki et al. Growth temperatures and the excess chlorine effect of N-polar GaN growth via tri-halide vapor phase epitaxy. J Cryst Growth, 502, 7(2018).

    [54] K Iso, K Matsuda, N Takekawa et al. Quasiequilibrium crystal shape and kinetic Wulff plot for GaN grown by trihalide vapor phase epitaxy using GaCl3. Phys Status Solidi B, 254, 1600679(2017).

    [55] K Iso, K Matsuda, N Takekawa et al. Thick nonpolar m-plane and semipolar (10(1)over-bar(1)over-bar) GaN on an ammonothermal seed by tri-halide vapor-phase epitaxy using GaCl3. J Cryst Growth, 461, 25(2017).

    [56] N Liu, J Wu, W Li et al. Highly uniform growth of 2-inch GaN wafers with a multi-wafer HVPE system. J Cryst Growth, 388, 132(2014).

    [57] Y Cheng, P Liu, J Wu et al. High uniform growth of 4-inch GaN wafer via flow field optimization by HVPE. J Cryst Growth, 445, 24(2016).

    [58] X F Han, M J Hur, J H Lee et al. Numerical simulation of the gallium nitride thin film layer grown on 6-inch wafer by commercial multi-wafer hydride vapor phase epitaxy. J Cryst Growth, 406, 53(2014).

    [59] X F Han, J H Lee, Y J Lee et al. Numerical analysis on the origin of thickness unevenness and formation of pits at GaN thin film grown by HVPE. J Cryst Growth, 450, 66(2016).

    [60] X F Han, J H Lee, Y J Lee et al. 3D numerical analysis of influence of the non-uniform deposition rate on the hillock density at HVPE-GaN surface. J Cryst Growth, 474, 81(2017).

    [61] W Luo, J Wu, J Goldsmith et al. The growth of high-quality and self-separation GaN thick-films by hydride vapor phase epitaxy. J Cryst Growth, 340, 18(2012).

    [62] M Amilusik, T Sochacki, B Łucznik et al. Analysis of self-lift-off process during HVPE growth of GaN on MOCVD-GaN/sapphire substrates with photolitographically patterned Ti mask. J Cryst Growth, 380, 99(2013).

    [63] Y Sui, B Wang, Z Zhao et al. Facet growth of self-separated GaN layers through HVPE on large square-patterned template. J Cryst Growth, 394, 11(2014).

    [64] M Lee, D Mikulik, M Yang et al. The investigation of stress in freestanding GaN crystals grown from Si substrates by HVPE. Sci Rep, 7, 8587(2017).

    [65] M Lee, D Mikulik, J Kim et al. A novel growth method of freestanding GaN using in situ removal of Si substrate in hydride vapor phase epitaxy. Appl Phys Express, 6, 125502(2013).

    [66] M Lee, D Mikulik, S Park. The investigation of in situ removal of Si substrates for freestanding GaN crystals by HVPE. RSC Adv, 8, 12310(2018).

    Jun Hu, Hongyuan Wei, Shaoyan Yang, Chengming Li, Huijie Li, Xianglin Liu, Lianshan Wang, Zhanguo Wang. Hydride vapor phase epitaxy for gallium nitride substrate[J]. Journal of Semiconductors, 2019, 40(10): 101801
    Download Citation