• Journal of Semiconductors
  • Vol. 43, Issue 4, 042501 (2022)
Wenrong Liu, Xinyang Li, Changwen Zhang, and Shishen Yan
Author Affiliations
  • School of Physics and Technology, Spintronics Institute, University of Jinan, Jinan 250022, China
  • show less
    DOI: 10.1088/1674-4926/43/4/042501 Cite this Article
    Wenrong Liu, Xinyang Li, Changwen Zhang, Shishen Yan. Janus VXY monolayers with tunable large Berry curvature[J]. Journal of Semiconductors, 2022, 43(4): 042501 Copy Citation Text show less
    References

    [1] Y L Guo, Y H Zhang, S J Yuan et al. Chromium sulfide halide monolayers: Intrinsic ferromagnetic semiconductors with large spin polarization and high carrier mobility. Nanoscale, 10, 18036(2018).

    [2] S J Zhang, C W Zhang, S F Zhang et al. Intrinsic Dirac half-metal and quantum anomalous Hall phase in a hexagonal metal-oxide lattice. Phys Rev B, 96, 205433(2017).

    [3] K S Novoselov, D Jiang, F Schedin et al. Two-dimensional atomic crystals. PNAS, 102, 10451(2005).

    [4] M H Zhang, C W Zhang, P J Wang et al. Prediction of high-temperature Chern insulator with half-metallic edge states in asymmetry-functionalized stanene. Nanoscale, 10, 20226(2018).

    [5] Y P Wang, W X Ji, C W Zhang et al. Discovery of intrinsic quantum anomalous Hall effect in organic Mn-DCA lattice. Appl Phys Lett, 110, 233107(2017).

    [6] S S Li, W X Ji, S J Hu et al. Effect of amidogen functionalization on quantum spin Hall effect in Bi/Sb(111) films. ACS Appl Mater Interfaces, 9, 41443(2017).

    [7] K S Novoselov, A K Geim, S V Morozov et al. Electric field effect in atomically thin carbon films. Science, 306, 666(2004).

    [8] D Pesin, A H MacDonald. Spintronics and pseudospintronics in graphene and topological insulators. Nat Mater, 11, 409(2012).

    [9] J R Schaibley, H Y Yu, G Clark et al. Valleytronics in 2D materials. Nat Rev Mater, 1, 16055(2016).

    [10] X Li, T Cao, Q Niu et al. Coupling the valley degree of freedom to antiferromagnetic order. PNAS, 110, 3738(2013).

    [11] J J Wang, S Liu, J Wang et al. Valley filter and valve effect by strong electrostatic potentials in graphene. Sci Rep, 7, 10236(2017).

    [12] J Zhou, Q Sun, P Jena. Valley-polarized quantum anomalous Hall effect in ferrimagnetic honeycomb lattices. Phys Rev Lett, 119, 046403(2017).

    [13] F Zhang, A H MacDonald, E J Mele. Valley Chern numbers and boundary modes in gapped bilayer graphene. PNAS, 110, 10546(2013).

    [14] M H Zhang, S F Zhang, P J Wang et al. Emergence of a spin-valley Dirac semimetal in a strained group-VA monolayer. Nanoscale, 12, 3950(2020).

    [15] M A U Absor, I Santoso et al. Polarity tuning of spin-orbit-induced spin splitting in two-dimensional transition metal dichalcogenides semiconductors. J Appl Phys, 122, 153905(2017).

    [16] X Xu, W Yao, D Xiao et al. Spin and pseudospins in layered transition metal dichalcogenides. Nat Phys, 10, 343(2014).

    [17] H L Zeng, J F Dai, W Yao et al. Valley polarization in MoS2 monolayers by optical pumping. Nat Nanotechnol, 7, 490(2012).

    [18] K F Mak, K L McGill, J Park et al. The valley Hall effect in MoS2 transistors. Science, 344, 1489(2014).

    [19] Y D Ma, L Z Kou, A J Du et al. Conduction-band valley spin splitting in single-layer H-Tl2O. Phys Rev B, 97, 035444(2018).

    [20] Z Xu, Q Y Zhang, Q Shen et al. First-principles prediction of Tl/SiC for valleytronics. J Mater Chem C, 5, 10427(2017).

    [21] H Q Ai, D Liu, J Z Geng et al. Theoretical evidence of the spin-valley coupling and valley polarization in two-dimensional MoSi2X4 (X = N, P, and As). Phys Chem Chem Phys, 23, 3144(2021).

    [22] Z M Yu, S Guan, X L Sheng et al. Valley-layer coupling: A new design principle for valleytronics. Phys Rev Lett, 124, 037701(2020).

    [23] D Odkhuu. Giant perpendicular magnetic anisotropy of an individual atom on two-dimensional transition metal dichalcogenides. Phys Rev B, 94, 060403(2016).

    [24] T Hu, F H Jia, G D Zhao et al. Intrinsic and anisotropic Rashba spin splitting in Janus transition-metal dichalcogenide monolayers. Phys Rev B, 97, 235404(2018).

    [25] A Y Lu, H Zhu, J Xiao et al. Janus monolayers of transition metal dichalcogenides. Nat Nanotechnol, 12, 744(2017).

    [26] M M Petrić, M Kremser, M Barbone et al. Raman spectrum of Janus transition metal dichalcogenide monolayers WSSe and MoSSe. Phys Rev B, 103, 035414(2021).

    [27] C Long, Y Dai, Z R Gong et al. Robust type-II band alignment in Janus-MoSSe bilayer with extremely long carrier lifetime induced by the intrinsic electric field. Phys Rev B, 99, 115316(2019).

    [28] Y J Ji, M Y Yang, H P Lin et al. Janus structures of transition metal dichalcogenides as the heterojunction photocatalysts for water splitting. J Phys Chem C, 122, 3123(2018).

    [29] Z Y Guan, S Ni, S L Hu. Tunable electronic and optical properties of monolayer and multilayer Janus MoSSe as a photocatalyst for solar water splitting: A first-principles study. J Phys Chem C, 122, 6209(2018).

    [30] L Dong, J Lou, V B Shenoy. Large in-plane and vertical piezoelectricity in Janus transition metal dichalchogenides. ACS Nano, 11, 8242(2017).

    [31] F Zhang, W B Mi, X C Wang. Spin-dependent electronic structure and magnetic anisotropy of 2D ferromagnetic Janus Cr2I3X3 (X = Br, Cl) monolayers. Adv Electron Mater, 6, 1900778(2020).

    [32] R Li, J W Jiang, X H Shi et al. Two-dimensional Janus FeXY (X, Y = Cl, Br, and I, X ≠ Y) monolayers: Half-metallic ferromagnets with tunable magnetic properties under strain. ACS Appl Mater Interfaces, 13, 38897(2021).

    [33] R Li, J W Jiang, W B Mi et al. Room temperature spontaneous valley polarization in two-dimensional FeClBr monolayer. Nanoscale, 13, 14807(2021).

    [34] Q F Yao, J Cai, W Y Tong et al. Manipulation of the large Rashba spin splitting in polar two-dimensional transition-metal dichalcogenides. Phys Rev B, 95, 165401(2017).

    [35] R Peng, Y D Ma, S Zhang et al. Valley polarization in Janus single-layer MoSSe via magnetic doping. J Phys Chem Lett, 9, 3612(2018).

    [36] Z P Zhang, J J Niu, P F Yang et al. Van der waals epitaxial growth of 2D metallic vanadium diselenide single crystals and their extra-high electrical conductivity. Adv Mater, 29, 1702359(2017).

    [37] R P Li, Y C Cheng, W Huang. Recent progress of Janus 2D transition metal chalcogenides: From theory to experiments. Small, 14, 1802091(2018).

    [38] J Zhang, S Jia, I Kholmanov et al. Janus monolayer transition-metal dichalcogenides. ACS Nano, 11, 8192(2017).

    [39] G B Liu, W Y Shan, Y G Yao et al. Three-band tight-binding model for monolayers of group-VIB transition metal dichalcogenides. Phys Rev B, 88, 085433(2013).

    [40] G B Liu, D Xiao, Y G Yao et al. Electronic structures and theoretical modelling of two-dimensional group-VIB transition metal dichalcogenides. Chem Soc Rev, 44, 2643(2015).

    [41] Y Y Wang, W Wei, H Wang et al. Janus TiXY monolayers with tunable Berry curvature. J Phys Chem Lett, 10, 7426(2019).

    [42] G Kresse, J Furthmüller. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys Rev B, 54, 11169(1996).

    [43] J P Perdew, K Burke, M Ernzerhof. Perdew, burke, and ernzerhof reply. Phys Rev Lett, 80, 891(1998).

    [44] J P Perdew, K Burke, M Ernzerhof. Generalized gradient approximation made simple. Phys Rev Lett, 77, 3865(1996).

    [45] G Kresse, D Joubert. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys Rev B, 59, 1758(1999).

    [46] C E Calderon, J J Plata, C Toher et al. The AFLOW standard for high-throughput materials science calculations. Comput Mater Sci, 108, 233(2015).

    [47] X Gonze, C Lee. Dynamical matrices, Born effective charges, dielectric permittivity tensors, and interatomic force constants from density-functional perturbation theory. Phys Rev B, 55, 10355(1997).

    [48] A Togo, I Tanaka. First principles phonon calculations in materials science. Scr Mater, 108, 1(2015).

    [49] D Bucher, L C T Pierce, J A McCammon et al. On the use of accelerated molecular dynamics to enhance configurational sampling in ab initio simulations. J Chem Theory Comput, 7, 890(2011).

    [50] A A Mostofi, J R Yates, Y S Lee et al. Wannier90: A tool for obtaining maximally-localised Wannier functions. Comput Phys Commun, 178, 685(2008).

    [51] I Smaili, S Laref, J H Garcia et al. Janus monolayers of magnetic transition metal dichalcogenides as an all-in-one platform for spin-orbit torque. Phys Rev B, 104, 104415(2021).

    [52] Y Ding, G F Yang, Y Gu et al. First-principles predictions of Janus MoSSe and WSSe for FET applications. J Phys Chem C, 124, 21197(2020).

    [53] J J Chen, K Wu, W Hu et al. Spin-orbit coupling in 2D semiconductors: A theoretical perspective. J Phys Chem Lett, 12, 12256(2021).

    [54] S V Eremeev, I A Nechaev, Y M Koroteev et al. Ideal two-dimensional electron systems with a giant Rashba-type spin splitting in real materials: Surfaces of bismuth tellurohalides. Phys Rev Lett, 108, 246802(2012).

    [55] W Z Zhou, J Y Chen, Z X Yang et al. Geometry and electronic structure of monolayer, bilayer, and multilayer Janus WSSe. Phys Rev B, 99, 075160(2019).

    [56] H Jin, T Wang, Z R Gong et al. Prediction of an extremely long exciton lifetime in a Janus-MoSTe monolayer. Nanoscale, 10, 19310(2018).

    [57] C Cheng, J T Sun, X R Chen et al. Nonlinear Rashba spin splitting in transition metal dichalcogenide monolayers. Nanoscale, 8, 17854(2016).

    [58] Q Y Zhang, U Schwingenschlögl. Rashba effect and enriched spin-valley coupling in GaX/MX2 (M = Mo, W; X = S, Se, Te) heterostructures. Phys Rev B, 97, 155415(2018).

    [59] Y C Cheng, Z Y Zhu, M Tahir et al. Spin-orbit–induced spin splittings in polar transition metal dichalcogenide monolayers. EPL, 102, 57001(2013).

    [60] Q H Liu, Y Z Guo, A J Freeman. Tunable Rashba effect in two-dimensional LaOBiS2 films: Ultrathin candidates for spin field effect transistors. Nano Lett, 13, 5264(2013).

    [61] D X Zhang, B Z Zhou. Controllable spin direction in nonmagnetic BX/MX2 (M = Mo or W; X = S, Se and Te) van der Waals heterostructures by switching between the Rashba splitting and valley polarization. J Mater Chem C, 10, 312(2022).

    [62] A Kormányos, V Zólyomi, N D Drummond et al. Spin-orbit coupling, quantum dots, and qubits in monolayer transition metal dichalcogenides. Phys Rev X, 4, 011034(2014).

    [63] K F Mak, K He, J Shan et al. Control of valley polarization in monolayer MoS2 by optical helicity. Nat Nanotechnol, 7, 494(2012).

    [64] Q Y Zhang, S A Yang, W B Mi et al. Large spin-valley polarization in monolayer MoTe2 on top of EuO(111). Adv Mater, 28, 959(2016).

    [65] C Zhao, T Norden, P Zhang et al. Enhanced valley splitting in monolayer WSe2 due to magnetic exchange field. Nat Nanotechnol, 12, 757(2017).

    [66] K L Seyler, D Zhong, B Huang et al. Valley manipulation by optically tuning the magnetic proximity effect in WSe2/CrI3 heterostructures. Nano Lett, 18, 3823(2018).

    [67] J Zhou, P Jena. Giant valley splitting and valley polarized plasmonics in group V transition-metal dichalcogenide monolayers. J Phys Chem Lett, 8, 5764(2017).

    [68] N Singh, U Schwingenschlögl. A route to permanent valley polarization in monolayer MoS2. Adv Mater, 29, 1600970(2017).

    [69] X F Chen, L S Zhong, X Li et al. Valley splitting in the transition-metal dichalcogenide monolayer via atom adsorption. Nanoscale, 9, 2188(2017).

    [70] X L Xu, Y D Ma, T Zhang et al. Nonmetal-atom-doping-induced valley polarization in single-layer Tl2O. J Phys Chem Lett, 10, 4535(2019).

    [71] S Poncé, E R Margine, F Giustino. Towards predictive many-body calculations of phonon-limited carrier mobilities in semiconductors. Phys Rev B, 97, 121201(2018).

    [72] X O Zhang, W Y Shan, D Xiao. Optical selection rule of excitons in gapped chiral fermion systems. Phys Rev Lett, 120, 077401(2018).

    [73] L Xie, X D Cui. Manipulating spin-polarized photocurrents in 2D transition metal dichalcogenides. PNAS, 113, 3746(2016).

    [74] D Xiao, G B Liu, W X Feng et al. Coupled spin and valley physics in monolayers of MoS2 and other group-VI dichalcogenides. Phys Rev Lett, 108, 196802(2012).

    [75] B R Zhu, H L Zeng, J F Dai et al. Anomalously robust valley polarization and valley coherence in bilayer WS2. PNAS, 111, 11606(2014).

    [76] A Kormányos, V Zólyomi, V I Fal'ko et al. Tunable Berry curvature and valley and spin Hall effect in bilayer MoS2. Phys Rev B, 98, 035408(2018).

    [77] J Son, K H Kim, Y H Ahn et al. Strain engineering of the berry curvature dipole and valley magnetization in monolayer MoS2. Phys Rev Lett, 123, 036806(2019).

    [78] A Kormányos, V Zólyomi, N D Drummond et al. Monolayer MoS2: Trigonal warping, the Γ valley, and spin-orbit coupling effects. Phys Rev B, 88, 045416(2013).

    [79] C S Xu, J S Feng, S Prokhorenko et al. Topological spin texture in Janus monolayers of the chromium trihalides Cr(I, X)3. Phys Rev B, 101, 060404(2020).

    [80] J H Liang, W W Wang, H F Du et al. Very large Dzyaloshinskii-Moriya interaction in two-dimensional Janus manganese dichalcogenides and its application to realize skyrmion states. Phys Rev B, 101, 184401(2020).

    [81] X D Duan, C Wang, Z Fan et al. Synthesis of WS2xSe2–2x alloy nanosheets with composition-tunable electronic properties. Nano Lett, 16, 264(2016).

    [82] S D Karande, N Kaushik, D S Narang et al. Thickness tunable transport in alloyed WSSe field effect transistors. Appl Phys Lett, 109, 142101(2016).

    Wenrong Liu, Xinyang Li, Changwen Zhang, Shishen Yan. Janus VXY monolayers with tunable large Berry curvature[J]. Journal of Semiconductors, 2022, 43(4): 042501
    Download Citation