• Journal of Semiconductors
  • Vol. 43, Issue 4, 042501 (2022)
Wenrong Liu, Xinyang Li, Changwen Zhang, and Shishen Yan
Author Affiliations
  • School of Physics and Technology, Spintronics Institute, University of Jinan, Jinan 250022, China
  • show less
    DOI: 10.1088/1674-4926/43/4/042501 Cite this Article
    Wenrong Liu, Xinyang Li, Changwen Zhang, Shishen Yan. Janus VXY monolayers with tunable large Berry curvature[J]. Journal of Semiconductors, 2022, 43(4): 042501 Copy Citation Text show less

    Abstract

    The Rashba effect and valley polarization provide a novel paradigm in quantum information technology. However, practical materials are scarce. Here, we found a new class of Janus monolayers VXY (X = Cl, Br, I; Y = Se, Te) with excellent valley polarization effect. In particular, Janus VBrSe shows Zeeman type spin splitting of 14 meV, large Berry curvature of 182.73 bohr2, and, at the same time, a large Rashba parameter of 176.89 meV·Å. We use the k·p theory to analyze the relationship between the lattice constant and the curvature of the Berry. The Berry curvature can be adjusted by changing the lattice parameter, which will greatly improve the transverse velocities of carriers and promote the efficiency of the valley Hall device. By applying biaxial strain onto VBrSe, we can see that there is a correlation between Berry curvature and lattice constant, which further validates the above theory. All these results provide tantalizing opportunities for efficient spintronics and valleytronics.
    $ \eta \left(k\right)=-\frac{\Omega \left(k\right)\cdot \widehat{z}}{{\mu }_{\rm B}^{*}\left(k\right)}\frac{e}{2ħ}{\varDelta }\left(k\right) , $ (1)

    View in Article

    $ {\widehat{H}}_{0}=at\left(\tau {k}_{x}{\widehat{\sigma }}_{x}+{k}_{y}{\widehat{\sigma }}_{y}\right)+\frac{{\varDelta }}{2}{\widehat{\sigma }}_{z}+I {\textit{ϵ}} , $ (2)

    View in Article

    $ \widehat{H}=at\left(\tau {k}_{x}{\widehat{\sigma }}_{x}+{k}_{y}{\widehat{\sigma }}_{y}\right)+\frac{{\varDelta }}{2}{\widehat{\sigma }}_{z}+I{\textit{ϵ}}-{\lambda }_{\mathrm{v}}\tau {\widehat{s}}_{z}\frac{{\widehat{\sigma }}_{z}-1}{2} , $ (3)

    View in Article

    $ \begin{array}{l}\widehat{H}=at\left(\tau {k}_{x}{\widehat{\sigma }}_{x}+{k}_{y}{\widehat{\sigma }}_{y}\right)+\dfrac{\varDelta }{2}{\widehat{\sigma }}_{z}+I{\textit{ϵ}}-{\lambda }_{\mathrm{v}}\tau {\widehat{s}}_{z}\dfrac{{\widehat{\sigma }}_{z}-1}{2}\\ \quad\quad+ {\lambda }_{\mathrm{c}}\tau {\widehat{s}}_{z}\dfrac{{\widehat{\sigma }}_{z}+1}{2}.\end{array} $ (4)

    View in Article

    $\widehat{H} = \left(\begin{array}{l} \dfrac{\varDelta }{2}+{\textit{ϵ}}+\tau {\lambda }_{\mathrm{c}} \;\;\;\, at\left(\tau {k}_{x}-i{k}_{y}\right) \;\;\; {{0}} \qquad\qquad\quad\; 0\\ at\left(\tau {k}_{x}+i{k}_{y}\right) \;\; -\dfrac{{\varDelta }}{2}+{\textit{ϵ}}+\tau {\lambda }_{\mathrm{v}} \;\, {{0}} \qquad\qquad\quad\; 0\\ 0 \qquad\qquad\quad\; {{0}} \qquad\qquad\quad\;\; \dfrac{{\varDelta }}{2}+{\textit{ϵ}}-\tau {\lambda }_{\mathrm{c}} \;\;\;\, at\left(\tau {k}_{x}-i{k}_{y}\right)\\ 0 \qquad\qquad\quad\; 0 \qquad\qquad\quad\;\; at\left(\tau {k}_{x}+i{k}_{y}\right) \;\; -\dfrac{\varDelta }{2}+{\textit{ϵ}}-\tau {\lambda }_{\mathrm{v}}\end{array}\right) . $ ()

    View in Article

    $ {\Omega }_{\mathrm{c}}\left(k\right)=-\tau \frac{2{a}^{2}{t}^{2}\varDelta }{{\left[{\varDelta }^{2}+4{a}^{2}{t}^{2}{k}^{2}\right]}^{\frac{3}{2}}} .$ (5)

    View in Article

    Wenrong Liu, Xinyang Li, Changwen Zhang, Shishen Yan. Janus VXY monolayers with tunable large Berry curvature[J]. Journal of Semiconductors, 2022, 43(4): 042501
    Download Citation