• Photonics Research
  • Vol. 6, Issue 4, 282 (2018)
Jin Hou1、*, Chunyong Yang1, Xiaohang Li2, Zhenzhou Cao1, and Shaoping Chen1
Author Affiliations
  • 1Hubei Key Laboratory of Intelligent Wireless Communications, College of Electronics and Information Engineering, South-Central University for Nationalities, Wuhan 430074, China
  • 2King Abdullah University of Science and Technology (KAUST), Advanced Semiconductor Laboratory, Thuwal 23955-6900, Saudi Arabia
  • show less
    DOI: 10.1364/PRJ.6.000282 Cite this Article Set citation alerts
    Jin Hou, Chunyong Yang, Xiaohang Li, Zhenzhou Cao, Shaoping Chen. Enhanced complete photonic bandgap in a moderate refractive index contrast chalcogenide-air system with connected-annular-rods photonic crystals[J]. Photonics Research, 2018, 6(4): 282 Copy Citation Text show less
    References

    [1] N. Anscombe. The promise of chalcogenides. Nat. Photonics, 5, 474(2011).

    [2] B. J. Eggleton. Chalcogenide photonics: fabrication, devices and applications Introduction. Opt. Express, 18, 26632-26634(2010).

    [3] D. Freeman, C. Grillet, M. W. Lee, C. L. C. Smith, Y. Ruan, A. Rode, M. Krolikowska, S. Tomljenovic-Hanic, C. M. de Sterke, M. J. Steel, B. Luther-Davies, S. Madden, D. J. Moss, Y.-H. Lee, B. J. Eggleton. Chalcogenide glass photonic crystals. Photon. Nanostruct., 6, 3-11(2008).

    [4] H. Lin, Q. Zhang, M. Gu. Three-dimensional nanoconfinement of broadband optical energy in all-dielectric photonic nanostructure. Photon. Res., 1, 136-139(2013).

    [5] M. Klimczak, B. Siwicki, A. Heidt, R. Buczyński. Coherent supercontinuum generation in soft glass photonic crystal fibers. Photon. Res., 5, 710-727(2017).

    [6] F. Koohi-Kamali, M. K. Moravvej-Farshi, M. Ebnali-Heidari. Dispersion compensation of 40  Gb/s data by phase conjugation in slow light engineered chalcogenide and silicon photonic crystal waveguides. 23rd Iranian Conference on Electrical Engineering, 1209-1214(2015).

    [7] X. Gai, B. Luther-Davies, T. P. White. Photonic crystal nanocavities fabricated from chalcogenide glass fully embedded in an index-matched cladding with a high Q-factor (>750,000). Opt. Express, 20, 15503-15515(2012).

    [8] M. Spurny, L. O’Faolain, D. A. P. Bulla, B. Luther-Davies, T. F. Krauss. Fabrication of low loss dispersion engineered chalcogenide photonic crystals. Opt. Express, 19, 1991-1996(2011).

    [9] C. Monat, M. Spurny, C. Grillet, L. O’Faolain, T. F. Krauss, B. J. Eggleton, D. Bulla, S. Madden, B. Luther-Davies. Third-harmonic generation in slow-light chalcogenide glass photonic crystal waveguides. Opt. Lett., 36, 2818-2820(2011).

    [10] K. Suzuki, T. Baba. Nonlinear light propagation in chalcogenide photonic crystal slow light waveguides. Opt. Express, 18, 26675-26685(2010).

    [11] M. W. Lee, C. Grillet, C. Monat, E. Mägi, S. Tomljenovic-Hanic, X. Gai, S. Madden, D.-Y. Choi, D. Bulla, B. Luther-Davies, B. J. Eggleton. Photosensitive and thermal nonlinear effects in chalcogenide photonic crystal cavities. Opt. Express, 18, 26695-26703(2010).

    [12] K. Paivasaari, V. K. Tikhomirov, J. Turunen. High refractive index chalcogenide glass for photonic crystal applications. Opt. Express, 15, 2336-2340(2007).

    [13] C. Grillet, C. L. C. Smith, D. Freeman, S. Madden, B. Luther-Davies, E. Magi, D. Moss, B. Eggleton. Efficient coupling to chalcogenide glass photonic crystal waveguides via silica optical fiber nanowires. Opt. Express, 14, 1070-1078(2006).

    [14] D. Freeman, S. Madden, B. Luther-Davies. Fabrication of planar photonic crystals in a chalcogenide glass using a focused ion beam. Opt. Express, 13, 3079-3086(2005).

    [15] J. Hou, D. S. Citrin, Z. Cao, C. Yang, Z. Zhong, S. Chen. Slow light in square-lattice chalcogenide photonic crystal holey fibers. IEEE J. Sel. Top. Quantum Electron., 22, 4900108(2016).

    [16] X. Gai, T. Han, A. Prasad, S. Madden, D.-Y. Choi, R. Wang, D. Bulla, B. Luther-Davies. Progress in optical waveguides fabricated from chalcogenide glasses. Opt. Express, 18, 26635-26646(2010).

    [17] A. F. Oskooi, J. D. Joannopoulos, S. G. Johnson. Zero-group-velocity modes in chalcogenide holey photonic-crystal fibers. Opt. Express, 17, 10082-10090(2009).

    [18] A. Labbani, L. Jouablia, A. Benghalia. Analysis of absolute photonic band gaps in two-dimensional photonic crystals based on CdSe rods embedded in TiO2 matrix. 21st IEEE International Conference on Electronics, Circuits and Systems (ICECS), 726-729(2014).

    [19] A. Kurs, J. D. Joannopoulos, M. Soljacic, S. G. Johnson. Abrupt coupling between strongly dissimilar waveguides with 100% transmission. Opt. Express, 19, 13714-13721(2011).

    [20] H. Kurt, D. S. Citrin. Annular photonic crystals. Opt. Express, 13, 10316-10326(2005).

    [21] J. Hou, D. S. Gao, H. M. Wu, Z. P. Zhou. Polarization insensitive self-collimation waveguide in square lattice annular photonic crystals. Opt. Commun., 282, 3172-3176(2009).

    [22] P. Shi, K. Huang, X. L. Kang, Y. P. Li. Creation of large band gap with anisotropic annular photonic crystal slab structure. Opt. Express, 18, 5221-5228(2010).

    [23] J. Hou, D. S. Citrin, H. Wu, D. Gao, Z. Zhou. Enhanced bandgap in annular photonic-crystal silicon-on-insulator asymmetric slabs. Opt. Lett., 36, 2263-2265(2011).

    [24] J. Grgic, S. Xiao, J. Mork, A.-P. Jauho, N. A. Mortensen. Slow-light enhanced absorption in a hollow-core fiber. Opt. Express, 18, 14270-14279(2010).

    [25] J. Laegsgaard. Trapping of slow solitons by longitudinal inhomogeneity in high-index photonic crystal fibers. J. Opt. Soc. Am. B, 28, 2617-2624(2011).

    [26] M. Ebnali-Heidari, F. Koohi-Kamali, A. Ebnali-Heidari, M. K. Moravvej-Farshi, B. T. Kuhlmey. Designing tunable microstructure spectroscopic gas sensor using optofluidic hollow-core photonic crystal fiber. IEEE J. Quantum Electron., 50, 1-8(2014).

    [27] S. G. Johnson, J. D. Joannopoulos. Block-iterative frequency-domain methods for Maxwell’s equations in a planewave basis. Opt. Express, 8, 173-190(2001).

    [28] S. G. Johnson, S. H. Fan, P. R. Villeneuve, J. D. Joannopoulos, L. A. Kolodziejski. Guided modes in photonic crystal slabs. Phys. Rev. B, 60, 5751-5758(1999).

    [29] J. D. Joannopoulos, S. G. Johnson, J. N. Winn, R. D. Meade. Photonic Crystals: Molding the Flow of Light(2008).

    [30] A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, S. G. Johnson. MEEP: a flexible free-software package for electromagnetic simulations by the FDTD method. Comput. Phys. Commun., 181, 687-702(2010).

    [31] J. Hou, D. S. Citrin, H. Wu, D. Gao, Z. Zhou, S. Chen. Slab-thickness dependence of photonic bandgap in photonic-crystal slabs. IEEE J. Sel. Top. Quantum Electron., 18, 1636-1642(2012).

    Jin Hou, Chunyong Yang, Xiaohang Li, Zhenzhou Cao, Shaoping Chen. Enhanced complete photonic bandgap in a moderate refractive index contrast chalcogenide-air system with connected-annular-rods photonic crystals[J]. Photonics Research, 2018, 6(4): 282
    Download Citation