• Journal of Semiconductors
  • Vol. 41, Issue 10, 102401 (2020)
Elyes Garoudja1, Walid Filali1, Slimane Oussalah2, Noureddine Sengouga3, and Mohamed Henini4
Author Affiliations
  • 1Plateforme Technologique de Microfabrication, Centre de Développement des Technologies Avancées, cité 20 août 1956, Baba Hassen, Algiers, Algeria
  • 2Microelectronics and Nanotechnology Division, Centre de Développement des Technologies Avancées, cité 20 août 1956, Baba Hassen, Algiers, Algeria
  • 3Laboratory of Metallic and Semiconducting Materials, Université de Biskra, B.P 455, 07000 Biskra RP, Algeria
  • 4School of Physics and Astronomy, Nottingham Nanotechnology and Nanoscience Center, University of Nottingham, Nottingham, NG7 2RD, UK
  • show less
    DOI: 10.1088/1674-4926/41/10/102401 Cite this Article
    Elyes Garoudja, Walid Filali, Slimane Oussalah, Noureddine Sengouga, Mohamed Henini. Comparative study of various methods for extraction of multi- quantum wells Schottky diode parameters[J]. Journal of Semiconductors, 2020, 41(10): 102401 Copy Citation Text show less

    Abstract

    In this work, forward current voltage characteristics for multi-quantum wells Al0.33Ga0.67As Schottky diode were measured at temperature ranges from 100 to 300 K. The main parameters of this Schottky diode, such as the ideality factor, barrier height, series resistance and saturation current, have been extracted using both analytical and heuristics methods. Differential evolution (DE), particle swarm optimization (PSO) and artificial bee colony (ABC) have been chosen as candidate heuristics algorithms, while Cheung technic was selected as analytical extraction method. The obtained results show clearly the high performance of DE algorithms in terms of parameters accuracy, convergence speed and robustness.
    ${{I =\; }}{{{I}}_{\rm{s}}}\left\{ {{\rm{exp}}\left[ {\frac{{{{q}}\left( {{{V}} - {{I}}{{{R}}_{\rm{s}}}} \right)}}{{{{nKT}}}}} \right]- 1} \right\}.$(1)

    View in Article

    ${{{I}}_{\rm{s}}} = AA^*{{{T}}^{\rm{2}}}{\rm{exp}}\left( {\frac{{- q{{\rm{\phi}}_{\rm{b}}}}}{{{{KT}}}}} \right).$(2)

    View in Article

    ${\rm{RMSE}} = \sqrt {\frac{{{I}}}{{{L}}}\sum\limits_{i = 1}^{{L}} {{{\left[ {{f_{\rm{i}}}\left( {{{{I}}_{{\rm{meas}}}},{{{V}}_{{\rm{meas}}}}, \eta } \right)} \right]}^2}} } ,$(3)

    View in Article

    $\begin{array}{l} \!\!\!\!\!\! {{f}}({{{I}}_{{\rm{meas}}}},{{{V}}_{{\rm{meas}}}},\eta) = {{{I}}_{{\rm{meas}}}}\; -\\ \qquad\qquad\;\;\;\;\;\;\quad \left( {{{{I}}_{\rm{s}}}\left\{ {{\rm{exp}}\left[ {\dfrac{{{{q}}\left( {{{{V}}_{{\rm{meas}}}} - {{{I}}_{{\rm{meas}}}}{{{R}}_{\rm{s}}}} \right)}}{{{{nkT}}}}} \right] - 1} \right\}} \right). \end{array}$(4)

    View in Article

    $ \eta = \left[ {{{n}},{{{I}}_{\rm{s}}},{{{R}}_{\rm{s}}}} \right].$()

    View in Article

    Elyes Garoudja, Walid Filali, Slimane Oussalah, Noureddine Sengouga, Mohamed Henini. Comparative study of various methods for extraction of multi- quantum wells Schottky diode parameters[J]. Journal of Semiconductors, 2020, 41(10): 102401
    Download Citation