• Opto-Electronic Advances
  • Vol. 4, Issue 5, 200037-1 (2021)
Tao Liu, Hao Li, Tao He, Cunzheng Fan, Zhijun Yan, Deming Liu, and Qizhen Sun*
Author Affiliations
  • School of Optical and Electronic Information and Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, China
  • show less
    DOI: 10.29026/oea.2021.200037 Cite this Article
    Tao Liu, Hao Li, Tao He, Cunzheng Fan, Zhijun Yan, Deming Liu, Qizhen Sun. Ultra-high resolution strain sensor network assisted with an LS-SVM based hysteresis model[J]. Opto-Electronic Advances, 2021, 4(5): 200037-1 Copy Citation Text show less
    References

    [1] KJ Bergen, PA Johnson, Hoop de, GC Beroza. Machine learning for data-driven discovery in solid Earth geoscience. Science, 363, eaau0323(2019).

    [2] QW Liu, T Tokunaga, ZY He. Ultra-high-resolution large-dynamic-range optical fiber static strain sensor using Pound–Drever–Hall technique. Opt Lett, 36, 4044-4046(2011).

    [3] CL Asheden, JM Lindsay, S Sherburn, IEM Smith, CA Miller, et al. Some challenges of monitoring a potentially active volcanic field in a large urban area: Auckland volcanic field, New Zealand. Nat Hazards, 59, 507-528(2011).

    [4] EE Davis, M Heesemann, A Lambert, JH He. Seafloor tilt induced by ocean tidal loading inferred from broadband seismometer data from the Cascadia subduction zone and Juan de Fuca Ridge. Earth Planet Sci Lett, 463, 243-252(2017).

    [5] T Kimura, H Murakami, T Matsumoto. Systematic monitoring of instrumentation health in high-density broadband seismic networks. Earth Planets Space, 67, 55(2015).

    [6] WZ Huang, WT Zhang, YB Luo, L Li, WY Liu, et al. Broadband FBG resonator seismometer: principle, key technique, self-noise, and seismic response analysis. Opt Express, 26, 10705-10715(2018).

    [7] P Jiang, LN Ma, ZL Hu, YM Hu. Low-crosstalk and polarization-independent inline interferometric fiber sensor array based on fiber Bragg gratings. J Lightw Technol, 34, 4232-4239(2016).

    [8] ZY Zhao, M Tang, C Lu. Distributed multicore fiber sensors. Opto-Electron Adv, 3, 190024(2020).

    [9] BZ Wang, DX Ba, Q Chu, LQ Qiu, DW Zhou et al. High-sensitivity distributed dynamic strain sensing by combining Rayleigh and Brillouin scattering. Opto-Electron Adv, 3, 200013(2020).

    [10] P Jousset, T Reinsch, T Ryberg, H Blanck, A Clarke, et al. Dynamic strain determination using fibre-optic cables allows imaging of seismological and structural features. Nat Commun, 9, 2509(2018).

    [11] JB Ajo-Franklin, S Dou, NJ Lindsey, I Monga, C Tracy, et al. Distributed acoustic sensing using dark fiber for near-surface characterization and broadband seismic event detection. Sci Rep, 9, 1328(2019).

    [12] A Masoudi, TP Newson. Contributed review: distributed optical fibre dynamic strain sensing. Rev Sci Instrum, 87, 011501(2016).

    [13] ZN Wang, L Zhang, S Wang, NT Xue, F Peng, et al. Coherent Φ-OTDR based on I/Q demodulation and homodyne detection. Opt Express, 24, 853-858(2016).

    [14] D Chen, QW Liu, ZY He. High-fidelity distributed fiber-optic acoustic sensor with fading noise suppressed and sub-meter spatial resolution. Opt Express, 26, 16138-16146(2018).

    [15] MS Wu, XY Fan, QW Liu, HY He. Highly sensitive quasi-distributed fiber-optic acoustic sensing system by interrogating a weak reflector array. Opt Lett, 43, 3594-3597(2018).

    [16] GH Liang, JF Jiang, K Liu, S Wang, TH Xu, et al. Phase demodulation method based on a dual-identical-chirped-pulse and weak fiber Bragg gratings for quasi-distributed acoustic sensing. Photonics Res, 8, 1093-1099(2020).

    [17] A Mateeva, J Lopez, D Chalenski, M Tatanova, P Zwartjes, et al. 4D DAS VSP as a tool for frequent seismic monitoring in deep water. Leading Edge, 36, 995-1000(2017).

    [18] X Zhong, CX Zhang, LJ Li, S Liang, Q Li, et al. Influences of laser source on phase-sensitivity optical time-domain reflectometer-based distributed intrusion sensor. Appl Opt, 53, 4645-4650(2014).

    [19] F Zhu, XP Zhang, L Xia, Z Guo, YX Zhang. Active compensation method for light source frequency drifting in Φ-OTDR sensing system. IEEE Photonic Technol Lett, 27, 2523-2526(2015).

    [20] Q Yuan, F Wang, T Liu, Y Liu, YX Zhang, et al. Compensating for influence of laser-frequency-drift in phase-sensitive OTDR with twice differential method. Opt. Express, 27, 3664-3671(2019).

    [21] Handbook of Optical Fibers 1–46 (Springer, 2019); https://doi.org/10.1007/978-981-10-1477-2_20-1.

    [22] H Li, QZ Sun, T Liu, CZ Fan, T He, et al. Ultra-high sensitive quasi-distributed acoustic sensor based on coherent OTDR and cylindrical transducer. J Lightw Technol, 38, 929-938(2020).

    [23] Proc. Optical Fiber Communications Conference (IEEE, 2019). https://doi.org/10.1364/OFC.2019.Th2A.16.

    [24] Proc. Optical Fiber Communications Conference (OSA, 2017). https://doi.org/10.1364/OFC.2017.W2A.19.

    [25] S Bobbio, G Milano, C Serpico, C Visone. Models of magnetic hysteresis based on play and stop hysterons. IEEE Trans Magn, 33, 4417-4426(1997).

    [26] P Ge, M Jouaneh. Generalized preisach model for hysteresis nonlinearity of piezoceramic actuators. Precis Eng, 20, 99-111(1997).

    [27] Hysteresis and Phase Transitions (Springer, New York, 1996).

    [28] JAK Suykens, J Vandewalle, Moor De. Optimal control by least squares support vector machines. Neural Netw, 14, 23-35(2001).

    [29] Statistical Learning Theory (Johan Wiley & Sons, New York, 1998).

    [30] ME Shirley, R Venkataraman. On the identification of Preisach measures. Proc SPIE, 5049, 326-336(2003).

    [31] JÅ Stakvik, MRP Ragazzon, A Eielsen, JT Gravdahl. On implementation of the Preisach model: identification and inversion for hysteresis compensation. Model, Ident Control, 36, 133-142(2015).

    Tao Liu, Hao Li, Tao He, Cunzheng Fan, Zhijun Yan, Deming Liu, Qizhen Sun. Ultra-high resolution strain sensor network assisted with an LS-SVM based hysteresis model[J]. Opto-Electronic Advances, 2021, 4(5): 200037-1
    Download Citation