• Photonics Research
  • Vol. 8, Issue 9, 1409 (2020)
Inki Kim1、†, Juyoung Yun2、†, Trevon Badloe1, Hyuk Park2, Taewon Seo2, Younghwan Yang1, Juhoon Kim1, Yoonyoung Chung2、5, and Junsuk Rho1、3、4、*
Author Affiliations
  • 1Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, South Korea
  • 2Department of Electrical Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, South Korea
  • 3Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, South Korea
  • 4National Institute of Nanomaterials Technology (NINT), Pohang 37673, South Korea
  • 5e-mail: ychung@postech.ac.kr
  • show less
    DOI: 10.1364/PRJ.395749 Cite this Article Set citation alerts
    Inki Kim, Juyoung Yun, Trevon Badloe, Hyuk Park, Taewon Seo, Younghwan Yang, Juhoon Kim, Yoonyoung Chung, Junsuk Rho. Structural color switching with a doped indium-gallium-zinc-oxide semiconductor[J]. Photonics Research, 2020, 8(9): 1409 Copy Citation Text show less
    References

    [1] A. Kristensen, J. K. W. Yang, S. I. Bozhevolnyi, S. Link, P. Nordlander, N. J. Halas, N. A. Mortensen. Plasmonic colour generation. Nat. Rev. Mater., 2, 16088(2016).

    [2] T. Lee, J. Jang, H. Jeong, J. Rho. Plasmonic- and dielectric-based structural coloring: from fundamentals to practical applications. Nano Converg., 5, 1(2018).

    [3] I. Kim, G. Yoon, J. Jang, P. Genevet, K. T. Nam, J. Rho. Outfitting next generation displays with optical metasurfaces. ACS Photon., 5, 3876-3895(2018).

    [4] C. U. Hail, G. Schnoering, M. Damak, D. Poulikakos, H. Eghlidi. A plasmonic painter’s method of color mixing for a continuous red-green-blue palette. ACS Nano, 14, 1783-1791(2020).

    [5] M. Song, D. Wang, S. Peana, S. Choudhury, P. Nyga, Z. A. Kudyshev, H. Yu, A. Boltasseva, V. M. Shalaev, A. V. Kildishev. Colors with plasmonic nanostructures: a full-spectrum review. Appl. Phys. Rev., 6, 041308(2019).

    [6] K. Kumar, H. Duan, R. S. Hegde, C. W. Koh, J. N. Wei, J. K. W. Yang. Printing color at the optical diffraction limit. Nat. Nanotechnol., 7, 557-561(2012).

    [7] B. Yang, W. Liu, Z. Li, H. Cheng, D.-Y. Choi, S. Chen, J. Tian. Ultrahighly saturated structural colors enhanced by multipolar-modulated metasurfaces. Nano Lett., 19, 4221-4228(2019).

    [8] J.-H. Yang, V. E. Babicheva, M.-W. Yu, T.-C. Lu, T.-R. Lin, K.-P. Chen. Structural colors enabled by lattice resonance on silicon nitride metasurfaces. ACS Nano, 14, 5678-5685(2020).

    [9] W. Yang, S. Xiao, Q. Song, Y. Liu, Y. Wu, S. Wang, J. Yu, J. Han, D.-P. Tsai. All-dielectric metasurface for high-performance structural color. Nat. Commun., 11, 1864(2020).

    [10] E. Højlund-Nielsen, J. Clausen, T. Mäkela, L. H. Thamdrup, M. Zalkovskij, T. Nielsen, N. L. Pira, J. Ahopelto, N. A. Mortensen, A. Kristensen. Plasmonic colors: toward mass production of metasurfaces. Adv. Mater. Technol., 1, 1600054(2016).

    [11] Z. Li, S. Butun, K. Aydin. Large-area, lithography-free super absorbers and color filters at visible frequencies using ultrathin metallic films. ACS Photon., 2, 183-188(2015).

    [12] S.-J. Kim, H.-K. Choi, H. Lee, S.-H. Hong. Solution-processable nanocrystal-based broadband Fabry–Perot absorber for reflective vivid color generation. ACS Appl. Mater. Interface, 11, 7280-7287(2019).

    [13] C. Williams, G. S. D. Gordon, T. D. Wilkinson, S. E. Bohndiek. Grayscale-to-color: scalable fabrication of custom multispectral filter arrays. ACS Photon., 6, 3132-3141(2019).

    [14] J. Jang, K. Kang, N. Raeis-Hosseini, A. Ismukhanova, H. Jeong, C. Jeong, B. Kim, J.-Y. Lee, I. Park, J. Rho. Self-powered humidity sensor using chitosan-based plasmonic metal-hydrogel-metal filters. Adv. Opt. Mater., 8, 1901932(2020).

    [15] S. Bang, J. Kim, G. Yoon, T. Tanaka, J. Rho. Recent advances in tunable and reconfigurable metamaterials. Micromachines, 9, 560(2018).

    [16] M. L. Tseng, J. Yang, M. Semmlinger, C. Zhang, P. Nordlander, N. J. Halas. Two-dimensional active tuning of an aluminum plasmonic array for full-spectrum response. Nano Lett., 17, 6034-6039(2017).

    [17] H. Kwon, S. Kim. Chemically tunable, biocompatible, and cost-effective metal-insulator-metal resonators using silk protein and ultrathin silver films. ACS Photon., 2, 1675-1680(2015).

    [18] S. D. Rezaei, J. Ho, A. Naderi, M. T. Yaraki, T. Wang, Z. Dong, S. Ramakrishna, J. K. W. Yang. Tunable, cost-effective, and scalable structural colors for sensing and consumer products. Adv. Opt. Mater., 7, 1900735(2019).

    [19] Y. Nagasaki, M. Suzuki, J. Takahara. All-dielectric dual-color pixel with subwavelength resolution. Nano Lett., 17, 7500-7506(2017).

    [20] B. Yang, W. Liu, Z. Li, H. Cheng, S. Chen, J. Tian. Polarization-sensitive structural colors with hue-and-saturation tuning based on all-dielectric nanopixels. Adv. Opt. Mater., 6, 1701009(2018).

    [21] J. Jang, H. Jeong, G. Hu, C.-W. Qiu, K. T. Nam, J. Rho. Tunable metasurfaces: Kerker-conditioned dynamics cryptographic nanoprints. Adv. Opt. Mater., 7, 1970016(2019).

    [22] M. Kim, I. Kim, J. Jang, D. Lee, K. T. Nam, J. Rho. Active color control in a metasurface by polarization rotation. Appl. Sci., 8, 982(2018).

    [23] H. Yun, S.-Y. Lee, K. Hong, J. Yeom, B. Lee. Plasmonic cavity-apertures as dynamic pixels for the simultaneous control of colour and intensity. Nat. Commun., 6, 7133(2015).

    [24] H.-E. Lee, H.-Y. Ahn, J. Mun, Y. Y. Lee, M. Kim, N. H. Cho, K. Chang, W. S. Kim, J. Rho, K. T. Nam. Amino-acid- and peptide-directed synthesis of chiral plasmonic gold nanoparticles. Nature, 556, 360-365(2018).

    [25] F.-Z. Shu, F.-F. Yu, R.-W. Peng, Y.-Y. Zhu, B. Xiong, R.-H. Fan, Z.-H. Wang, Y. Liu, M. Wang. Dynamic plamonic color generation based on phase transition of vanadium dioxide. Adv. Opt. Mater., 6, 1700939(2018).

    [26] T. Badloe, I. Kim, J. Rho. Moth-eye shaped on-demand broadband and switchable perfect absorbers based on vanadium dioxide. Sci. Rep., 10, 4522(2020).

    [27] P. Hosseini, C. D. Wright, H. Bhaskaran. An optoelectronic framework enabled by low-dimensional phase-change films. Nature, 511, 206-211(2014).

    [28] S. Yoo, T. Gwon, T. Eom, S. Kim, C. S. Hwang. Multicolor changeable optical coating by adopting multiple layers of ultrathin phase change material film. ACS Photon., 3, 1265-1270(2016).

    [29] N. Raeis-Hosseini, S. Lim, H. Hwang, J. Rho. Reliable Ge2Sb2Te5-integrated high-density nanoscale conductive bridge random access memory using facile nitrogen-doping strategy. Adv. Electron. Mater., 4, 1800360(2018).

    [30] N. Raeis-Hosseini, J. Rho. Dual-functional nanoscale devices using phase change materials: reconfigurable perfect absorber with nonvolatile resistance-change memory characteristics. Appl. Sci., 9, 564(2019).

    [31] W. Dong, H. Liu, J. K. Behera, L. Lu, R. J. H. Ng, K. V. Sreekanth, X. Zhou, J. K. W. Yang. Wide bandgap change material tuned visible photonics. Adv. Funct. Mater., 29, 1806181(2019).

    [32] X. Y. Duan, S. Kamin, N. Liu. Dynamic plasmonic colour display. Nat. Commun., 8, 14606(2017).

    [33] Y. Chen, X. Y. Duan, M. Matuschek, Y. Zhou, F. Neubrech, H. G. Duan, N. Liu. Dynamic color displays using stepwise cavity resonators. Nano Lett., 17, 5555-5560(2017).

    [34] N. Liu, M. L. Tang, M. Hentschel, H. Giessen. Nanoantenna-enhanced gas sensing in a single tailored nanofocus. Nat. Mater., 10, 631-636(2011).

    [35] D. Franklin, Y. Chen, A. Vazquez-Guardado, S. Modak, J. Boroumand, D. Xu, S.-T. Wu, D. Chanda. Polarization-independent actively tunable colour generation on imprinted plasmonic surfaces. Nat. Commun., 6, 7337(2015).

    [36] K. Xiong, D. Tordera, G. Emilsson, O. Olsson, U. Linderhed, M. P. Jonsson, A. B. Dahlin. Switchable plasmonic metasurfaces with high chromaticity containing only abundant metals. Nano Lett., 17, 7033-7039(2017).

    [37] J. Peng, H.-H. Jeong, Q. Lin, S. Cormier, H.-L. Liang, M. F. L. De Volder, S. Vignolini, J. J. Baumberg. Scalable electrochromic nanopixels using plasmonics. Sci. Adv., 5, eaaw2205(2019).

    [38] G. Yoon, S. So, M. Kim, J. Mun, R.-M. Ma, J. Rho. Electrically tunable metasurface perfect absorber for infrared frequencies. Nano Converg., 4, 36(2017).

    [39] Y. Li, J. van de Groep, A. A. Talin, M. L. Brongersma. Dynamic tuning of gap plasmon resonances using a solid-state electrochromic device. Nano Lett., 19, 7988-7995(2019).

    [40] M. Huang, A. J. Tan, F. Büttner, H. Liu, Q. Ruan, W. Hu, C. Mazzoli, S. Wilkins, C. Duan, J. K. W. Yang, G. S. D. Beach. Voltage-gated optics and plasmonics enabled by solid-state proton pumping. Nat. Commun., 10, 5030(2019).

    [41] Y. Yu, Y. Yu, L. Huang, H. Peng, L. Xiong, L. Cao. Giant gating tunability of optical refractive index in transition metal dichalcogenide monolayers. Nano Lett., 17, 3613-3618(2017).

    [42] H. Hosono. How we made the IGZO transistor. Nat. Electron., 1, 428(2018).

    [43] J. K. Jeong, J. H. Jeong, J. H. Choi, J. S. Im, S. H. Kim, H. W. Yang, K. N. Kang, K. S. Kim, T. K. Ahn, H.-J. Chung, M. Kim, B. S. Gu, J.-S. Park, Y.-G. Mo, H. D. Kim. 3.1: Distinguished Paper: 12.1-inch WXGA AMOLED display driven by indium-gallium-zinc oxide TFTs array. SID Symp. Dig. Tech. Pap., 39, 1-4(2008).

    [44] D. Geng, S. Han, H. Seo, M. Mativenga, J. Jang. Piezoelectric pressure sensing device using top-gate effect of dual-gate a-IGZO TFT. IEEE Sens. J., 17, 585-586(2017).

    [45] Y.-H. Tai, H.-L. Chiu, L.-S. Chou. Active matrix touch sensor detecting time-constant change implemented by dual-gate IGZO TFTs. Solid-State Electron., 72, 67-72(2012).

    [46] H. Chen, Y. Cao, J. Zhang, C. Zhou. Large-scale complementary macroelectronics using hybrid integration of carbon nanotubes and IGZO thin-film transistors. Nat. Commun., 5, 4097(2014).

    [47] T. Kamiya, K. Nomura, H. Hosono. Present status of amorphous In-Ga-Zn-O thin-film transistors. Sci. Tech. Adv. Mater., 11, 044305(2010).

    [48] H. Fujiwara, M. Kondo. Effects of carrier concentration on the dielectric function of ZnO:Ga and In2O3:Sn studied by spectroscopic ellipsometry: analysis of free-carrier and band-edge absorption. Phys. Rev. B, 71, 075109(2005).

    [49] X. D. Li, S. Chen, T. P. Chen, Y. Liu. Thickness dependence of optical properties of amorphous indium gallium zinc oxide thin films: effects of free-electrons and quantum confinement. ECS Solid State Lett., 4, P29-P32(2015).

    [50] J.-S. Park, J. K. Jeong, Y.-G. Mo, H. D. Kim, S.-I. Kim. Improvements in the device characteristics of amorphous indium gallium zinc oxide thin-film transistors by Ar plasma treatment. Appl. Phys. Lett., 90, 262106(2007).

    [51] I. Sajedian, T. Badloe, J. Rho. Optimization of colour generation from dielectric nanostructures using reinforcement learning. Opt. Express, 27, 5874-5883(2019).

    [52] T. Badloe, I. Kim, J. Rho. Biomimetic ultra-broadband perfect absorbers optimized with reinforcement learning. Phys. Chem. Chem. Phys., 22, 2337-2342(2020).

    Inki Kim, Juyoung Yun, Trevon Badloe, Hyuk Park, Taewon Seo, Younghwan Yang, Juhoon Kim, Yoonyoung Chung, Junsuk Rho. Structural color switching with a doped indium-gallium-zinc-oxide semiconductor[J]. Photonics Research, 2020, 8(9): 1409
    Download Citation