• Opto-Electronic Advances
  • Vol. 4, Issue 6, 210040-1 (2021)
Daewook Kim1、2、3、*, Heejoo Choi1、3, Trenton Brendel1, Henry Quach1, Marcos Esparza1, Hyukmo Kang1, Yi-Ting Feng1, Jaren N. Ashcraft1, Xiaolong Ke4, Tianyi Wang5, and Ewan S. Douglas2
Author Affiliations
  • 1Wyant College of Optical Sciences, University of Arizona, 1630 E. University Blvd., Tucson, AZ 85721, USA
  • 2Department of Astronomy and Steward Observatory, University of Arizona, 933 N. Cherry Ave., Tucson, AZ 85721, USA
  • 3Large Binocular Telescope Observatory, University of Arizona, 933 N. Cherry Ave., Tucson, AZ 85721, USA
  • 4School of Mechanical and Automotive Engineering, Xiamen University of Technology, Xiamen 361024, China
  • 5National Synchrotron Light Source II (NSLS-II), Brookhaven National Laboratory, PO Box 5000, Upton, New York 11973, USA
  • show less
    DOI: 10.29026/oea.2021.210040 Cite this Article
    Daewook Kim, Heejoo Choi, Trenton Brendel, Henry Quach, Marcos Esparza, Hyukmo Kang, Yi-Ting Feng, Jaren N. Ashcraft, Xiaolong Ke, Tianyi Wang, Ewan S. Douglas. Advances in optical engineering for future telescopes[J]. Opto-Electronic Advances, 2021, 4(6): 210040-1 Copy Citation Text show less
    References

    [1] HM Martin, RG Allen, JH Burge, DW Kim, JS Kingsley et al. Fabrication and testing of the first 8.4-m off-axis segment for the Giant Magellan Telescope. Proc SPIE, 7739, 77390A(2010).

    [2] HM Martin, RG Allen, JH Burge, DW Kim, JS Kingsley et al. Production of 8.4m segments for the Giant Magellan Telescope. Proc SPIE, 8450, 84502D(2012).

    [3] HM Martin, JH Burge, JM Davis, DW Kim, JS Kingsley et al. Status of mirror segment production for the Giant Magellan Telescope. Proc SPIE, 9912, 99120V(2016).

    [4] HM Martin, R Allen, V Gasho, BT Jannuzi, DW Kim et al. Manufacture of primary mirror segments for the Giant Magellan Telescope. Proc SPIE, 10706, 107060V(2018).

    [5] DW Kim, SW Kim, JH Burge. Non-sequential optimization technique for a computer controlled optical surfacing process using multiple tool influence functions. Opt Express, 17, 21850-21866(2009).

    [6] XL Ke, TY Wang, H Choi, W Pullen, L Huang et al. Dual-tool multiplexing model of parallel computer controlled optical surfacing. Opt Lett, 45, 6426-6429(2020).

    [7] DW Kim, WH Park, SW Kim, JH Burge. Edge tool influence function library using the parametric edge model for computer controlled optical surfacing. Proc SPIE, 7426, 74260G(2009).

    [8] VS Negi, H Garg, Kumar Shravan, V Karar, UK Tiwari et al. Parametric removal rate survey study and numerical modeling for deterministic optics manufacturing. Opt Express, 28, 26733-26749(2020).

    [9] TY Wang, L Huang, H Kang, H Choi, DW Kim et al. RIFTA: a robust iterative Fourier transform-based dwell time Algorithm for ultra-precision ion beam figuring of synchrotron mirrors. Sci Rep, 10, 8135(2020).

    [10] TY Wang, L Huang, Y Zhu, M Vescovi, D Khune et al. Development of a position–velocity–time-modulated two-dimensional ion beam figuring system for synchrotron x-ray mirror fabrication. Appl Opt, 59, 3306-3314(2020).

    [11] S Rodriguez, A Rakich, J Hill, O Kuhn, T Brendel et al. Implementation of a laser-truss based telescope metrology system at the Large Binocular Telescope. Proc SPIE, 11487, 114870E(2020).

    [12] A Rakich, H Choi, C Veillet, JM Hill, M Bec et al. A laser-truss based optical alignment system on LBT. Proc SPIE, 11445, 114450R(2020).

    [13] H Kang, D Thompson, A Conrad, C Vogel, A Lamdan et al. Modular plug-in extension enabling cross-dispersed spectroscopy for Large Binocular Telescope. Proc SPIE, 11116, 1111606(2019).

    [14] YT Feng, JN Ashcraft, JB Breckinridge, JE Harvey, ES Douglas et al. Topological pupil segmentation and point spread function analysis for large aperture imaging systems. Proc SPIE, 11568, 115680I(2020).

    [15] D Apai, TD Milster, DW Kim, A Bixel, G Schneider et al. A thousand earths: a very large aperture, ultralight space telescope array for atmospheric biosignature surveys. Astron J, 158, 83(2019).

    [16] Deep Space Gateway Concept Science Workshop 3127 (LPI, 2018). Bibcode: 2018LPICo2063.3127A

    [17] D Apai, TD Milster, DW Kim, A Bixel, G Schneider et al. Nautilus Observatory: a space telescope array based on very large aperture ultralight diffractive optical elements. Proc SPIE, 11116, 1111608(2019).

    [18] Frontiers in Optics 2020 FM1A.2 (OSA, 2020); https://doi.org/10.1364/FIO.2020.FM1A.2.

    [19] DW Kim, CK Walker, D Apai, TD Milster, Y Takashima et al. Disruptive space telescope concepts, designs, and developments: OASIS and Nautilus -INVITED. EPJ Web Conf, 238, 06001(2020).

    [20] MA Esparza, H Choi, DW Kim. Alignment of Multi-Order Diffractive Engineered (MODE) lens segments using the Kinematically-Engaged Yoke System. Proc SPIE, 11487, 114870V(2020).

    [21] H Choi, MA Esparza, A Lamdan, TT Feng, T Milster et al. In-process metrology for segmented optics UV curing control. Proc SPIE, 11487, 114870M(2020).

    [22] Proceedings of 2017 IEEE MTT-S International Microwave Symposium (IMS) 1884–1887 (IEEE, 2017); https://doi.org/10.1109/MWSYM.2017.8059024.

    [23] Proceedings of 2020 IEEE Aerospace Conference 1–9 (IEEE, 2020); https://doi.org/10.1109/AERO47225.2020.9172651.

    [24] H Quach, J Berkson, S Sirsi, H Choi, R Dominguez et al. Full-aperture optical metrology for inflatable membrane mirrors. Proc SPIE, 11487, 114870N(2020).

    [25] H Choi, IL Trumper, YT Feng, H Kang, J Berkson et al. Long-slit cross-dispersion spectroscopy for Hyperion UV space telescope. J Astron Telesc, Instrum, Syst, 7, 014006(2021).

    [26] H Choi, I Trumper, YT Feng, H Kang, E Hamden et al. Hyperion: far-UV cross dispersion spectroscope design. Proc SPIE, 11487, 114870W(2020).

    [27] ER Maier, ES Douglas, DW Kim, K Su, JN Ashcraft et al. Design of the vacuum high contrast imaging testbed for CDEEP, the Coronagraphic Debris and Exoplanet Exploring Pioneer. Proc SPIE, 11443, 114431Y(2020).

    [28] DW Kim, M Esparza, H Quach, S Rodriguez, H Kang et al. Optical technology for future telescopes. Proc SPIE, 11761, 1176103(2021).

    [29] Independent Variables for Optical Surfacing Systems: Synthesis, Characterization and Application. (Springer-Verlag, Berlin, 2014).

    [30] CL Carnal, CM Egert, KW Hylton. Advanced matrix-based algorithm for ion-beam milling of optical components. Proc SPIE, 1752, 54-62(1992).

    [31] JF Wu, ZW Lu, HX Zhang, TS Wang. Dwell time algorithm in ion beam figuring. Appl Opt, 48, 3930-3937(2009).

    [32] T Huang, D Zhao, ZC Cao. Trajectory planning of optical polishing based on optimized implementation of dwell time. Precis Eng, 62, 223-231(2020).

    [33] L Zhou, YF Dai, XH Xie, CJ Jiao, SY Li. Model and method to determine dwell time in ion beam figuring. Nanotechnol Precis Eng, 5, 107-112(2007).

    [34] YF Zhang, FZ Fang, W Huang, W Fan. Dwell time algorithm based on bounded constrained least squares under dynamic performance constraints of machine tool in deterministic optical finishing. Int J Precis Eng Manuf-Green Technol(2021).

    [35] CJ Jiao, SY Li, XH Xie. Algorithm for ion beam figuring of low-gradient mirrors. Appl Opt, 48, 4090-4096(2009).

    [36] SR Wilson, JR McNeil. Neutral ion beam figuring of large optical surfaces. Proc SPIE, 0818, 320-324(1987).

    [37] TY Wang, L Huang, M Vescovi, D Kuhne, K Tayabaly et al. Study on an effective one-dimensional ion-beam figuring method. Opt Express, 27, 15368-15381(2019).

    [38] WH Richardson. Bayesian-based iterative method of image restoration. J Opt Soc Am, 62, 55-59(1972).

    [39] JA Nelder, R Mead. A simplex method for function minimization. Comput J, 7, 308-313(1965).

    [40] L Huang, TY Wang, K Tayabaly, D Kuhne, WH Xu et al. Stitching interferometry for synchrotron mirror metrology at National Synchrotron Light Source II (NSLS-II). Opt Lasers Eng, 124, 105795(2020).

    [41] L Huang, TY Wang, J Nicolas, A Vivo, F Polack et al. Two-dimensional stitching interferometry for self-calibration of high-order additive systematic errors. Opt Express, 27, 26940-26956(2019).

    [42] https://sites.google.com/a/lbto.org/luci/documents-and-links.

    [43] CH Werenskiold. Improved telescope spider design. J Roy Astron Soc Can, 35, 268(1941).

    [44] Amateur Telescope Making (Book Two), Ingalls AG, ed, 8th Printing 620–622 (Scientific American, Inc, 1952).

    [45] E Everhart, JW Kantorski. Diffraction patterns produced by obstructions in reflecting telescopes of modest size. Astron J, 64, 455(1959).

    [46] JL Richter. Spider diffraction: a comparison of curved and straight legs. Appl Opt, 23, 1907-1913(1984).

    [47] JE Harvey, C Ftaclas. Diffraction effects of telescope secondary mirror spiders on various image-quality criteria. Appl Opt, 34, 6337-6349(1995).

    [48] NJ Kasdin, RJ Vanderbei, DN Spergel, MG Littman. Extrasolar planet finding via optimal apodized-pupil and shaped-pupil coronagraphs. Astrophys J, 582, 1147-1161(2003).

    [49] JB Breckinridge, JE Harvey, K Crabtree, T Hull. Exoplanet telescope diffracted light minimized: the pinwheel-pupil solution. Proc SPIE, 10698, 106981P(2018).

    [50] F Snik, O Absil, P Baudoz, M Beaulieu, E Bendek et al. Review of high-contrast imaging systems for current and future ground-based and space-based telescopes III: technology opportunities and pathways. Proc SPIE, 10706, 107062L(2018).

    [51] JB Breckinridge, JE Harvey, R Irvin, R Chipman, M Kupinski et al. ExoPlanet Optics: conceptual design processes for stealth telescopes. Proc SPIE, 11115, 111150H(2019).

    [52] JE Harvey, JB Breckinridge, RG Irvin, RN Pfisterer. Novel designs for minimizing diffraction effects of large segmented mirror telescopes. Proc SPIE, 10745, 107450L(2018).

    [53]

    [54] MD Perrin, R Soummer, EM Elliott, MD Lallo, A Sivaramakrishnan. Simulating point spread functions for the James Webb Space Telescope with WebbPSF. Proc SPIE, 8442, 84423D(2012).

    [55] G Ruane, A Riggs, CT Coker, SB Shaklan, E Sidick et al. Fast Linearized Coronagraph Optimizer (FALCO) IV: coronagraph design survey for obstructed and segmented apertures. Proc SPIE, 10698, 106984U(2018).

    [56] M N’Diaye, R Soummer, L Pueyo, A Carlotti, CC Stark et al. Apodized pupil lyot coronagraphs for arbitrary apertures. Astrophys J, 818, 163(2016).

    [57] Optical Design and Fabrication 2019 FM4B.4 (OSA, 2019). https://doi.org/10.1364/FREEFORM.2019.FM4B.4.

    [58] Bulletin of the AAS [Internet]. 2019 Sep 30;51(7). https://baas.aas.org/pub/2020n7i047.

    [59] MC Knauer, J Kaminski, G Hausler. Phase measuring deflectometry: a new approach to measure specular free-form surfaces. Proc SPIE, 5457, 366-376(2004).

    [60] P Su, RE Parks, LR Wang, RP Angel, JH Burge. Software configurable optical test system: a computerized reverse Hartmann test. Appl Opt, 49, 4404-4412(2010).

    [61] TQ Su, SS Wang, RE Parks, P Su, JH Burge. Measuring rough optical surfaces using scanning long-wave optical test system. Appl Opt, 52, 7117-7126(2013).

    [62] CJ Evans, RN Kestner. Test optics error removal. Appl Opt, 35, 1015-1021(1996).

    [63] D Decataldo, A Pallottini, A Ferrara, L Vallini, S Gallerani. Photoevaporation of jeans-unstable molecular clumps. Mon Not Roy Astron Soc, 487, 3377-3391(2019).

    [64] RJ Gould, EE Salpeter. The interstellar abundance of the hydrogen molecule. I. Basic processes. Astrophys J, 138, 393(1963).

    [65] MR Krumholz. The big problems in star formation: the star formation rate, stellar clustering, and the initial mass function. Phys Rep, 539, 49-134(2014).

    [66] Modern Lens Design 2nd ed (McGraw-Hill, New York, 2005).

    [67] The Art and Science of Optical Design (Cambridge University Press, Cambridge, 1997).

    [68] I Trumper, AQ Anderson, JM Howard, G West, DW Kim. Design form classification of two-mirror unobstructed freeform telescopes. Opt Eng, 59, 025105(2020).

    [69] SC West, SH Bailey, S Bauman, B Cuerden, Z Granger et al. A space imaging concept based on a 4m structured spun-cast borosilicate monolithic primary mirror. Proc SPIE, 7731, 77311O(2010).

    [70] G Allan, ES Douglas, D Barnes, M Egan, G Furesz et al. The deformable mirror demonstration mission (DeMi) CubeSat: optomechanical design validation and laboratory calibration. Proc SPIE, 10698, 1069857(2018).

    [71] RE Morgan, ES Douglas, GW Allan, P Bierden, S Chakrabarti et al. MEMS deformable mirrors for space-based high-contrast imaging. Micromachines, 10, 366(2019).

    [72] CB Mendillo, GA Howe, K Hewawasam, J Martel, SC Finn et al. Optical tolerances for the PICTURE-C mission: error budget for electric field conjugation, beam walk, surface scatter, and polarization aberration. Proc SPIE, 10400, 1040010(2017).

    [73] CB Mendillo, BA Hicks, TA Cook, TG Bifano, DA Content et al. PICTURE: a sounding rocket experiment for direct imaging of an extrasolar planetary environment. Proc SPIE, 8442, 84420E(2012).

    [74] S Chakrabarti, CB Mendillo, TA Cook, JF Martel, SC Finn et al. Planet Imaging Coronagraphic Technology Using a Reconfigurable Experimental Base (PICTURE-B): the second in the series of suborbital exoplanet experiments. J Astron Inst, 5, 1640004(2016).

    [75] ES Douglas, CB Mendillo, TA Cook, KL Cahoy, S Chakrabarti. Wavefront sensing in space: flight demonstration II of the PICTURE sounding rocket payload. J Astron Telesc, Instrum, Syst, 4, 019003(2018).

    [76] R Belikov, J Lozi, E Pluzhnik, TT Hix, E Bendek et al. EXCEDE technology development III: first vacuum tests. Proc SPIE, 9143, 914323(2014).

    [77] D Sirbu, SJ Thomas, R Belikov, J Lozi, E Bendek et al. EXCEDE technology development IV: demonstration of polychromatic contrast in vacuum at 1.2 λ/D. Proc SPIE, 9605, 96050J(2015).

    [78] https://digitalcommons.usu.edu/smallsat/2016/Poster3/4.

    [79] F Tinker, K Xin. Fabrication of SiC aspheric mirrors with low mid-spatial error. Proc SPIE, 8837, 88370M(2013).

    [80] D Mawet, E Serabyn, K Liewer, C Hanot, S McEldowney et al. Optical vectorial vortex coronagraphs using liquid crystal polymers: theory, manufacturing and laboratory demonstration. Opt Express, 17, 1902-1918(2009).

    [81] D Mawet, E Serabyn, K Liewer, R Burruss, J Hickey et al. The vector vortex coronagraph: laboratory results and first light at Palomar observatory. Astrophys J, 709, 53-57(2010).

    [82]

    [83]

    [84] G Singh, F Martinache, P Baudoz, O Guyon, T Matsuo et al. Lyot-based low order wavefront sensor for phase-mask coronagraphs: principle, simulations and laboratory experiments. Publ Astron Soc Pac, 126, 586-594(2014).

    [85] R Belikov, A Give’on, B Kern, E Cady, M Carr et al. Demonstration of high contrast in 10% broadband light with the shaped pupil coronagraph. Proc SPIE, 6693, 66930Y(2007).

    [86] L Pueyo, C Stark, R Juanola-Parramon, N Zimmerman, M Bolcar et al. The LUVOIR Extreme Coronagraph for Living Planetary Systems (ECLIPS) I: searching and characterizing exoplanetary gems. Proc SPIE, 11117, 1111703(2019).

    [87] NJ Kasdin, VP Bailey, B Mennesson, RT Zellem, M Ygouf et al. The Nancy grace roman space telescope coronagraph instrument (CGI) technology demonstration. Proc SPIE, 11443, 114431U(2020).

    [88] J Mazoyer, L Pueyo. Fundamental limits to high-contrast wavefront control. Proc SPIE, 10400, 1040014(2017).

    Daewook Kim, Heejoo Choi, Trenton Brendel, Henry Quach, Marcos Esparza, Hyukmo Kang, Yi-Ting Feng, Jaren N. Ashcraft, Xiaolong Ke, Tianyi Wang, Ewan S. Douglas. Advances in optical engineering for future telescopes[J]. Opto-Electronic Advances, 2021, 4(6): 210040-1
    Download Citation