• Opto-Electronic Advances
  • Vol. 4, Issue 6, 210040-1 (2021)
Daewook Kim1、2、3、*, Heejoo Choi1、3, Trenton Brendel1, Henry Quach1, Marcos Esparza1, Hyukmo Kang1, Yi-Ting Feng1, Jaren N. Ashcraft1, Xiaolong Ke4, Tianyi Wang5, and Ewan S. Douglas2
Author Affiliations
  • 1Wyant College of Optical Sciences, University of Arizona, 1630 E. University Blvd., Tucson, AZ 85721, USA
  • 2Department of Astronomy and Steward Observatory, University of Arizona, 933 N. Cherry Ave., Tucson, AZ 85721, USA
  • 3Large Binocular Telescope Observatory, University of Arizona, 933 N. Cherry Ave., Tucson, AZ 85721, USA
  • 4School of Mechanical and Automotive Engineering, Xiamen University of Technology, Xiamen 361024, China
  • 5National Synchrotron Light Source II (NSLS-II), Brookhaven National Laboratory, PO Box 5000, Upton, New York 11973, USA
  • show less
    DOI: 10.29026/oea.2021.210040 Cite this Article
    Daewook Kim, Heejoo Choi, Trenton Brendel, Henry Quach, Marcos Esparza, Hyukmo Kang, Yi-Ting Feng, Jaren N. Ashcraft, Xiaolong Ke, Tianyi Wang, Ewan S. Douglas. Advances in optical engineering for future telescopes[J]. Opto-Electronic Advances, 2021, 4(6): 210040-1 Copy Citation Text show less

    Abstract

    Significant optical engineering advances at the University of Arizona are being made for design, fabrication, and construction of next generation astronomical telescopes. This summary review paper focuses on the technological advances in three key areas. First is the optical fabrication technique used for constructing next-generation telescope mirrors. Advances in ground-based telescope control and instrumentation comprise the second area of development. This includes active alignment of the laser truss-based Large Binocular Telescope (LBT) prime focus camera, the new MOBIUS modular cross-dispersion spectroscopy unit used at the prime focal plane of the LBT, and topological pupil segment optimization. Lastly, future space telescope concepts and enabling technologies are discussed. Among these, the Nautilus space observatory requires challenging alignment of segmented multi-order diffractive elements. The OASIS terahertz space telescope presents unique challenges for characterizing the inflatable primary mirror, and the Hyperion space telescope pushes the limits of high spectral resolution, far-UV spectroscopy. The Coronagraphic Debris and Exoplanet Exploring Pioneer (CDEEP) is a Small Satellite (SmallSat) mission concept for high-contrast imaging of circumstellar disks and exoplanets using vector vortex coronagraph. These advances in optical engineering technologies will help mankind to probe, explore, and understand the scientific beauty of our universe.
    $Z\left( {x,y} \right) = R(u,v) * * [T\left( {x,y} \right) \times V\left( {x,y} \right) \times P\left( {x,y} \right)]\;,$(1)

    View in Article

    $\rm{BC-1} :{Z}_{1}^{\rm{s}}(x,y)\equiv {Z}_{1}^{\rm{m}}(x,y)\;\;\;{\rm{and}}\;\;\;Z_2^{\rm{s}}(x,y) \equiv Z_2^{\rm{m}}(x,y)\;, $(2)

    View in Article

    $\left\{\begin{gathered} T_1^{\rm{s}} \times V_1^{\rm{s}} \times P_1^{\rm{s}} = T_1^{\rm{m}} \times V_1^{\rm{m}} \times P_1^{\rm{m}} \\ T_2^{\rm{s}} \times V_2^{\rm{s}} \times P_2^{\rm{s}} = T_2^{\rm{m}} \times V_2^{\rm{m}} \times P_2^{\rm{m}} \\ \end{gathered}\;\right., $(3)

    View in Article

    $\left\{\begin{gathered} T_1^{\rm{s}}(x,y) = T_1^{\rm{m}}(x,y) \\ V_1^{\rm{s}}(x,y) = V_1^{\rm{m}}(x,y) \\ \end{gathered}\right.\;.$(4)

    View in Article

    $ {\rm{BC-2}}:{T}_{2}^{{\rm{m}}}(x,y)\equiv {\rm{rotate}}({T}_{1}^{{\rm{m}}}(x,y),180^ \circ ).$(5)

    View in Article

    $V_{\rm{2}}^{\rm{m}}(x,y) = V_2^{\rm{s}}(x,y)\frac{{T_2^{\rm{s}}(x,y)}}{{T_2^{\rm{m}}(x,y)}}.$(6)

    View in Article

    $z\left( {x,y} \right) = b\left( {x,y} \right) * t\left( {x,y} \right)\;,$(7)

    View in Article

    $t\left( {x,y} \right) = {F^{ - 1}}\left[ {\frac{{{Z_{\rm{d}}}\left( {u,v} \right)}}{{B\left( {u,v} \right)}}} \right],$(8)

    View in Article

    $t\left( {x,y} \right) = {F^{ - 1}}\left[ {\frac{{{Z_{\rm{d}}}\left( {u,v} \right)}}{{B\left( {u,v;\gamma } \right)}}} \right],$(9)

    View in Article

    $B\left( {u,v;\gamma } \right) = \left\{ \begin{gathered} B\left( {u,v} \right),\,\,\,\,\,\,\left\| {B\left( {u,v} \right)} \right\| > \gamma \\ \gamma ,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,{\rm{otherwise}} \\ \end{gathered} \right..$(10)

    View in Article

    ${z_{\rm{r}}} = {z_{\rm{d}}} - z\;.$(11)

    View in Article

    ${\gamma _{\rm {opt}}} = \mathop {\arg \min }\limits_\gamma RMS \left[ {{z_{\rm{r}}}\left( {x,y} \right)} \right].$(12)

    View in Article

    $\begin{split} &{\gamma _{\rm{opt}}} = \\& \mathop {\arg \min }\limits_\gamma {\rm{RMS}} \left\{ {{z_{\rm{d}}}\left( {x,y} \right) - b\left( {x,y} \right) * {F^{ - 1}}\left[ {\frac{{{Z_{\rm{DG}}}\left( {u,v} \right)}}{{B\left( {u,v;\gamma } \right)}}} \right]} \right\}.\end{split} $(13)

    View in Article

    Daewook Kim, Heejoo Choi, Trenton Brendel, Henry Quach, Marcos Esparza, Hyukmo Kang, Yi-Ting Feng, Jaren N. Ashcraft, Xiaolong Ke, Tianyi Wang, Ewan S. Douglas. Advances in optical engineering for future telescopes[J]. Opto-Electronic Advances, 2021, 4(6): 210040-1
    Download Citation