• Advanced Photonics Nexus
  • Vol. 2, Issue 1, 016003 (2023)
Hua-Ying Liu1、2、3、†,*, Minghao Shang1、2、3, Xiaoyi Liu1、3、4, Ying Wei1、2、3, Minghao Mi1、3、5, Lijian Zhang1、3、5, Yan-Xiao Gong1、2、3、*, Zhenda Xie1、3、4、*, and Shining Zhu1、2、3、5
Author Affiliations
  • 1Nanjing University, National Laboratory of Solid State Microstructures, Nanjing, China
  • 2Nanjing University, School of Physics, Nanjing, China
  • 3Nanjing University, Collaborative Innovation Center of Advanced Microstructures, Nanjing, China
  • 4Nanjing University, School of Electronic Science and Engineering, Nanjing, China
  • 5Nanjing University, College of Engineering and Applied Sciences, Nanjing, China
  • show less
    DOI: 10.1117/1.APN.2.1.016003 Cite this Article Set citation alerts
    Hua-Ying Liu, Minghao Shang, Xiaoyi Liu, Ying Wei, Minghao Mi, Lijian Zhang, Yan-Xiao Gong, Zhenda Xie, Shining Zhu. Deterministic N-photon state generation using lithium niobate on insulator device[J]. Advanced Photonics Nexus, 2023, 2(1): 016003 Copy Citation Text show less
    References

    [1] A. W. Harrow, A. Montanaro. Quantum computational supremacy. Nature, 549, 203-209(2017).

    [2] F. Arute et al. Quantum supremacy using a programmable superconducting processor. Nature, 574, 505-510(2019).

    [3] M. Hillery et al. Quantum secret sharing. Phys. Rev. A, 59, 1829(1999).

    [4] T. Zheng et al. Arbitrated quantum signature scheme with quantum teleportation by using two three-qubit GHZ states. Quantum Inf. Process., 19, 1-15(2020).

    [5] H. B. Ch, G. Brassard. Quantum cryptography: public key distribution and coin tossing(1984).

    [6] L.-C. Kwek et al. Chip-based quantum key distribution. AAPPS Bull., 31, 1-8(2021).

    [7] G.-L. Long, X.-S. Liu. Theoretically efficient high-capacity quantum-key-distribution scheme. Phys. Rev. A, 65, 032302(2002).

    [8] H. Zhang et al. Realization of quantum secure direct communication over 100 km fiber with time-bin and phase quantum states. Light Sci. Appl., 11, 1-9(2022).

    [9] R. Krischek et al. Useful multiparticle entanglement and sub-shot-noise sensitivity in experimental phase estimation. Phys. Rev. Lett., 107, 080504(2011).

    [10] J. I. Yokoyama. Implication of pulsar timing array experiments on cosmological gravitational wave detection. AAPPS Bull., 31, 1-13(2021).

    [11] A. Pandey, V. Ramesh. Quantum computing for big data analysis. Indian J. Sci., 14, 98-104(2015).

    [12] S. Atallah, S. Atallah, A. B. Atallah. Quantum theory and computing for surgeons. Digital Surgery(2021).

    [13] M. Gotarane, S. Gandhi. Quantum computing: future computing. Inter. Res. J. Eng. Technol., 3, 1424-1427(2016).

    [14] M. Gong et al. Quantum walks on a programmable two-dimensional 62-qubit superconducting processor. Science, 372, 948-952(2021).

    [15] P. Chapman. Introducing the World’s most powerful quantum computer(2020).

    [16] P. Ball. First quantum computer to pack 100 qubits enters crowded race. Nature, 599, 542-542(2021).

    [17] J.-W. Pan et al. Experimental realization of freely propagating teleported qubits. Nature, 421, 721-725(2003).

    [18] J. Yin et al. Satellite-based entanglement distribution over 1200 kilometers. Science, 356, 1140-1144(2017).

    [19] H.-Y. Liu et al. Drone-based entanglement distribution towards mobile quantum networks. Nat. Sci. Rev., 7, 921-928(2020).

    [20] H.-Y. Liu et al. Optical-relayed entanglement distribution using drones as mobile nodes. Phys. Rev. Lett., 126, 020503(2021).

    [21] X. F. Wang et al. Transmission of photonic polarization states from geosynchronous Earth orbit satellite to the ground. Quantum Eng., 3, e73(2021).

    [22] S. Harris et al. Observation of tunable optical parametric fluorescence. Phys. Rev. Lett., 18, 732(1967).

    [23] J. Armstrong et al. Interactions between light waves in a nonlinear dielectric. Phys. Rev., 127, 1918(1962).

    [24] H. S. Zhong et al. 12-photon entanglement and scalable scattershot boson sampling with optimal entangled-photon pairs from parametric down-conversion. Phys. Rev. Lett., 121, 250505(2018).

    [25] H. Hübel et al. Direct generation of photon triplets using cascaded photon-pair sources. Nature, 466, 601-603(2010).

    [26] D. R. Hamel et al. Direct generation of three-photon polarization entanglement. Nat. Photonics, 8, 801-807(2014).

    [27] M. Y. Niu et al. Qudit-basis universal quantum computation using chi((2)) interactions. Phys. Rev. Lett., 120, 160502(2018).

    [28] N. K. Langford et al. Efficient quantum computing using coherent photon conversion. Nature, 478, 360-363(2011).

    [29] G. Poberaj et al. Lithium niobate on insulator (LNOI) for micro-photonic devices. Laser Photonics Rev., 6, 488-503(2012).

    [30] A. Boes et al. Status and potential of lithium niobate on insulator (LNOI) for photonic integrated circuits. Laser Photonics Rev., 12, 1700256(2018).

    [31] Y. Jia et al. Ion-cut lithium niobate on insulator technology: recent advances and perspectives. Appl. Phys. Rev., 8, 011307(2021).

    [32] B. Gao et al. Long-lived lithium niobate: history and progress. J. Synth. Cryst., 50, 1183-1199(2021).

    [33] J. Sun et al. Brief review of lithium niobate crystal and its applications. J. Synth. Cryst., 49, 947-964(2020).

    [34] R. R. Xie et al. Microresonators in lithium niobate thin films. Adv. Opt. Mater., 9, 2100539(2021).

    [35] J. Liu et al. Emerging material platforms for integrated microcavity photonics. Sci. China Phys. Mech. Astron., 65, 1-19(2022).

    [36] J. H. Zhang et al. Fabrication of crystalline microresonators of high quality factors with a controllable wedge angle on lithium niobate on insulator. Nanomaterials-Basel, 9, 1218(2019).

    [37] M. Zhang et al. Monolithic ultra-high-Q lithium niobate microring resonator. Optica, 4, 1536-1537(2017).

    [38] B. Gao et al. Electro-optic lithium niobate metasurfaces. Sci. China Phys. Mech. Astron., 64, 1-6(2021).

    [39] M. Wang et al. Chemo-mechanical polish lithography: a pathway to low loss large-scale photonic integration on lithium niobate on insulator. Quantum Eng., 1, e9(2019).

    [40] R. Gao et al. Broadband highly efficient nonlinear optical processes in on-chip integrated lithium niobate microdisk resonators of Q-factor above 108. New J. Phys., 23, 123027(2021).

    [41] X. Guo et al. Liquid metals dealloying as a general approach for the selective extraction of metals and the fabrication of nanoporous metals: a review. Mater. Today Commun., 26, 102007(2021).

    [42] J. Zhao et al. High quality entangled photon pair generation in periodically poled thin-film lithium niobate waveguides. Phys. Rev. Lett., 124, 163603(2020).

    [43] J. Wang et al. Multidimensional quantum entanglement with large-scale integrated optics. Science, 360, 285-291(2018).

    [44] M. Mahmoud et al. Lithium niobate electro-optic racetrack modulator etched in Y-cut LNOI platform. IEEE Photonics J., 10, 1-10(2018).

    [45] P. D. Drummond, M. S. Hillery. The Quantum Theory of Nonlinear Optics(2014).

    [46] N. Quesada, J. Sipe. Why you should not use the electric field to quantize in nonlinear optics. Opt. Lett., 42, 3443-3446(2017).

    [47] R. Yanagimoto et al. Broadband parametric downconversion as a discrete–continuum Fano interaction(2020).

    [48] Y. J. Lu, Z. Y. Ou. Optical parametric oscillator far below threshold: experiment versus theory. Phys. Rev. A, 62, 033804(2000).

    [49] K.-H. Luo et al. Direct generation of genuine single-longitudinal-mode narrowband photon pairs. New J. Phys., 17, 073039(2015).

    [50] Z. Ma et al. Ultrabright quantum photon sources on chip. Phys. Rev. Lett., 125, 263602(2020).

    [51] D. Zhu et al. Integrated photonics on thin-film lithium niobate. Adv. Opt. Photonics, 13, 242-352(2021).

    [52] J.-Y. Chen et al. Photon conversion and interaction in a quasi-phase-matched microresonator. Phys. Rev. Appl., 16, 064004(2021).

    [53] P. A. M. Dirac. Lectures on Quantum Mechanics(2001).

    [54] G. N. Conti et al. Planar coupling to high-Q lithium niobate disk resonators. Opt. Express, 19, 3651-3656(2011).

    [55] A. A. Savchenkov et al. Kilohertz optical resonances in dielectric crystal cavities. Phys. Rev. A, 70, 051804(2004).

    [56] J. S. Pelc. Frequency Conversion of Single Photons: Physics, Devices, and Applications(2012).

    [57] P. Kumar. Quantum frequency-conversion. Opt. Lett., 15, 1476-1478(1990).

    [58] J. S. Pelc et al. Long-wavelength-pumped upconversion single-photon detector at 1550 nm: performance and noise analysis. Opt. Express, 19, 21445-21456(2011).

    [59] J. S. Pelc et al. Dual-channel, single-photon upconversion detector at 1.3  μm. Opt. Express, 20, 19075-19087(2012). https://doi.org/10.1364/OE.20.019075

    [60] C. Langrock et al. Highly efficient single-photon detection at communication wavelengths by use of upconversion in reverse-proton-exchanged periodically poled LiNbO3 waveguides. Opt. Lett., 30, 1725-1727(2005). https://doi.org/10.1364/OL.30.001725

    [61] K.-D. F. Büchter et al. Waveguide-based mid-infrared up-conversion detectors, IWF3(2011).

    [62] P. Walther et al. Experimental one-way quantum computing. Nature, 434, 169-176(2005).

    [63] R. Raussendorf et al. Measurement-based quantum computation on cluster states. Phys. Rev. A, 68, 022312(2003).

    [64] Y. Tokunaga et al. Generation of high-fidelity four-photon cluster state and quantum-domain demonstration of one-way quantum computing. Phys. Rev. Lett., 100, 210501(2008).

    [65] M. Xu et al. High-performance coherent optical modulators based on thin-film lithium niobate platform. Nat. Commun., 11, 3911(2020).

    [66] J. Jian et al. High modulation efficiency lithium niobate Michelson interferometer modulator. Opt. Express, 27, 18731-18739(2019).

    [67] A. Honardoost et al. High-speed modeling of ultracompact electrooptic modulators. J. Lightwave Technol., 36, 5893-5902(2018).

    [68] M. Johnson et al. Low-loss, low-crosstalk waveguide crossing for scalable integrated silicon photonics applications. Opt. Express, 28, 12498-12507(2020).

    [69] G.-T. Xue et al. Ultrabright multiplexed energy-time-entangled photon generation from lithium niobate on insulator chip. Phys. Rev. Appl., 15, 064059(2021).

    [70] D. Wang et al. Cascaded sum-frequency generation and electro-optic polarization coupling in the PPLNOI ridge waveguide. Opt. Express, 27, 15283-15288(2019).

    [71] X. Liu et al. Highly efficient thermo-optic tunable micro-ring resonator based on an LNOI platform. Opt. Lett., 45, 6318-6321(2020).

    [72] H. Liang et al. High-quality lithium niobate photonic crystal nanocavities. Optica, 4, 1251-1258(2017).

    Hua-Ying Liu, Minghao Shang, Xiaoyi Liu, Ying Wei, Minghao Mi, Lijian Zhang, Yan-Xiao Gong, Zhenda Xie, Shining Zhu. Deterministic N-photon state generation using lithium niobate on insulator device[J]. Advanced Photonics Nexus, 2023, 2(1): 016003
    Download Citation