The large-photon-number quantum state is a fundamental but nonresolved request for practical quantum information applications. We propose an N-photon state generation scheme that is feasible and scalable, using lithium niobate on insulator circuits. Such a scheme is based on the integration of a common building block called photon-number doubling unit (PDU) for deterministic single-photon parametric downconversion and upconversion. The PDU relies on a 107-optical-quality-factor resonator and mW-level on-chip power, which is within the current fabrication and experimental limits. N-photon state generation schemes, with cluster and Greenberger–Horne–Zeilinger state as examples, are shown for different quantum tasks.
Hua-Ying Liu, Minghao Shang, Xiaoyi Liu, Ying Wei, Minghao Mi, Lijian Zhang, Yan-Xiao Gong, Zhenda Xie, Shining Zhu, "Deterministic N-photon state generation using lithium niobate on insulator device," Adv. Photon. Nexus 2, 016003 (2023)