• Advanced Photonics Nexus
  • Vol. 2, Issue 1, 016003 (2023)
Hua-Ying Liu1、2、3、†,*, Minghao Shang1、2、3, Xiaoyi Liu1、3、4, Ying Wei1、2、3, Minghao Mi1、3、5, Lijian Zhang1、3、5, Yan-Xiao Gong1、2、3、*, Zhenda Xie1、3、4、*, and Shining Zhu1、2、3、5
Author Affiliations
  • 1Nanjing University, National Laboratory of Solid State Microstructures, Nanjing, China
  • 2Nanjing University, School of Physics, Nanjing, China
  • 3Nanjing University, Collaborative Innovation Center of Advanced Microstructures, Nanjing, China
  • 4Nanjing University, School of Electronic Science and Engineering, Nanjing, China
  • 5Nanjing University, College of Engineering and Applied Sciences, Nanjing, China
  • show less
    DOI: 10.1117/1.APN.2.1.016003 Cite this Article Set citation alerts
    Hua-Ying Liu, Minghao Shang, Xiaoyi Liu, Ying Wei, Minghao Mi, Lijian Zhang, Yan-Xiao Gong, Zhenda Xie, Shining Zhu. Deterministic N-photon state generation using lithium niobate on insulator device[J]. Advanced Photonics Nexus, 2023, 2(1): 016003 Copy Citation Text show less

    Abstract

    The large-photon-number quantum state is a fundamental but nonresolved request for practical quantum information applications. We propose an N-photon state generation scheme that is feasible and scalable, using lithium niobate on insulator circuits. Such a scheme is based on the integration of a common building block called photon-number doubling unit (PDU) for deterministic single-photon parametric downconversion and upconversion. The PDU relies on a 107-optical-quality-factor resonator and mW-level on-chip power, which is within the current fabrication and experimental limits. N-photon state generation schemes, with cluster and Greenberger–Horne–Zeilinger state as examples, are shown for different quantum tasks.

    Video Introduction to the Article

    H^=H^NL+H^L=Aeff3·(χ(2)ε02np2ns2ni2)LdzΛ^szΛ^izΛ^pz+j=p,s,iAj2Ldz[1ε0nj2(Λ^jz)2+μ0(Λ^jt)2].

    View in Article

    Λ^j(z,t)=0dkj2μ0ωjAj·(αkja^kjeikjzeiωjt+h.c.).

    View in Article

    Q>ωRc|1/ns01/ni0|,

    View in Article

    Λ^j(z,t)=kj0Δkj0+Δdkj2μ0ωjAj·(αkja^kjeikjzeiωjt+h.c.).

    View in Article

    H^=gkp0Δkp0+Δdkpks0Δks0+Δdkski0Δki0+Δdki·(v(kp)v*(ks)v*(ki)a^ksa^kia^kpei(ωpωsωi)t+h.c.)+j=p,s,ikj0Δkj0+ΔdkjckjRnj|v(kj)|2a^kja^kj,

    View in Article

    H^=ξ(ς^sς^iς^p+ς^pς^sς^i)+ωp0ς^pς^p+ωs0ς^sς^s+ωi0ς^iς^i,

    View in Article

    ξχ(2)12πε0R(cnp0ns0ni0)32AeffAp0As0Ai0kp0ks0ki0.

    View in Article

    |Ψ(tI)=eiωp0tI[cos(ξtI)|1pisin(ξtI)|1,1s,i],

    View in Article

    ηPDC=sin2(2πξQω).

    View in Article

    H^I=iι(a^sa^ph.c.),

    View in Article

    ηPUC=sin2(κPSFG1l),

    View in Article

    |cluster4=12(|0˜0˜0˜0˜1234+|0˜0˜1˜1˜1234+|1˜1˜0˜0˜1234|1˜1˜1˜1˜1234),

    View in Article

    |GHz4=(|0˜4+eiφ|1˜4)/2,

    View in Article

    Hua-Ying Liu, Minghao Shang, Xiaoyi Liu, Ying Wei, Minghao Mi, Lijian Zhang, Yan-Xiao Gong, Zhenda Xie, Shining Zhu. Deterministic N-photon state generation using lithium niobate on insulator device[J]. Advanced Photonics Nexus, 2023, 2(1): 016003
    Download Citation