• Journal of Semiconductors
  • Vol. 40, Issue 4, 042101 (2019)
Guiying Shen1, Youwen Zhao1、2, Yongbiao Bai1, Jingming Liu1, Hui Xie1, Zhiyuan Dong1, Jun Yang1, and Ding Yu1、2
Author Affiliations
  • 1Key Laboratory of Semiconductor Materials Science and Beijing Key Laboratory of Low-Dimensional Semiconductor Materials and Devices, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China
  • 2Center of Materials Science and Opto-Electronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
  • show less
    DOI: 10.1088/1674-4926/40/4/042101 Cite this Article
    Guiying Shen, Youwen Zhao, Yongbiao Bai, Jingming Liu, Hui Xie, Zhiyuan Dong, Jun Yang, Ding Yu. Photoluminescene study acceptor defects in lightly doped n type GaSb single crystals[J]. Journal of Semiconductors, 2019, 40(4): 042101 Copy Citation Text show less
    References

    [1] P S Dutta, H L Bhat, V Kumar. The physics and technology of gallium antimonide: An emerging optoelectronic material. J Appl Phys, 81, 5821(1997).

    [2] N Zia, J Viheriälä, R Koskinen et al. High power (60 mW) GaSb-based 1.9 μm superluminescent diode with cavity suppression element. Appl Phys Lett, 109, 231102(2016).

    [3] X Zhou, D Li, J Huang et al. Mid-wavelength type II InAs/GaSb superlattice infrared focal plane arrays. Infrared Phys Technol, 78, 263(2016).

    [4] H J Haugan, G J Brown, F Szmulowicz et al. InAs/GaSb type-II superlattices for high performance mid-infrared detectors. J Cryst Growth, 278, 198(2005).

    [5] J Su, T Liu, J M Liu et al. Thermally induced native defect transform in annealed GaSb. Chin Phys B, 25, 077801(2016).

    [6] J Kujala, N Segercrantz, F Tuomisto et al. Native point defects in GaSb. J Appl Phys, 116, 143508(2014).

    [7] N Segercrantz, J Slotte, I Makkonen et al. Point defect balance in epitaxial GaSb. Appl Phys Lett, 105, 082113(2014).

    [8] H A Tahini, A Chroneos, S T Murphy et al. Vacancies and defect levels in III–V semiconductors. J Appl Phys, 114, 063517(2013).

    [9] A S Vlasov, E P Rakova, V P Khvostikov et al. Native defect concentration in Czochralski-grown Te-doped GaSb by photoluminescence. Sol Energ Mat Sol C, 94, 1113(2010).

    [10] W G Hu, Z Wang, B F Su et al. Gallium antisite defect and residual acceptors in undoped GaSb. Phys Lett A, 332, 286(2004).

    [11] P Rudolph, M Czupalla, B Lux. LEC growth of semi-insulating GaAs crystals in traveling magnetic field generated in a heater–magnet module. J Cryst Growth, 311, 4543(2009).

    [12] B C Houchens, P Becla, S E Tritchler et al. Crystal growth of bulk ternary semiconductors: comparison of GaInSb growth by horizontal Bridgman and horizontal traveling heater method. J Cryst Growth, 312, 1091(2010).

    [13] P G Mo, H Z Tan, L X Du et al. A novel technique for Czochralski growth of GaSb single crystals. J Cryst Growth, 126, 613(1993).

    [14] R Pino, Y Ko, P S Dutta. Enhancement of infrared transmission in GaSb bulk crystals by carrier compensation. J Appl Phys, 96, 1064(2004).

    [15] Y B Bai, Y W Zhao, G Y Shen et al. N-type GaSb single crystals with high below-band gap transmission. Chin Phys B, 26, 107801(2017).

    [16] A Chandola, R Pino, P S Dutta. Below bandgap optical absorption in tellurium-doped GaSb. Semicond Sci Technol, 20, 886(2005).

    [17] A Bignazzi, A Bosacchi, R Magnanini. Photoluminescence study of heavy doping effects in Te-doped GaSb. J Appl Phys, 81, 7540(1997).

    [18] M C Wu, C C Chen. Photoluminescence of liquid-phase epitaxial Te-doped GaSb. J Appl Phys, 73, 8495(1993).

    [19] P S Dutta, K S R K Rao, H L Bhat et al. Photoluminescence studies in bulk gallium antimonide. Appl Phys A, 61, 149(1995).

    [20] W J Jiang, Y M Sun, M C Wu. Electrical and photoluminescent properties of high-quality GaSb and AlGaSb layers grown from Sb-rich solutions by liquid-phase epitaxy. J Appl Phys, 77, 1725(1995).

    Guiying Shen, Youwen Zhao, Yongbiao Bai, Jingming Liu, Hui Xie, Zhiyuan Dong, Jun Yang, Ding Yu. Photoluminescene study acceptor defects in lightly doped n type GaSb single crystals[J]. Journal of Semiconductors, 2019, 40(4): 042101
    Download Citation