• Advanced Photonics
  • Vol. 4, Issue 5, 056002 (2022)
Linpeng Lu1、2、3、4、†, Jiaji Li1、2、3、4, Yefeng Shu1、2、3、4, Jiasong Sun1、2、3、4, Jie Zhou1、2、3、4, Edmund Y. Lam5、*, Qian Chen2、3、*, and Chao Zuo1、2、3、4、*
Author Affiliations
  • 1Nanjing University of Science and Technology, Smart Computational Imaging Laboratory (SCILab), Nanjing, China
  • 2Nanjing University of Science and Technology, School of Electronic and Optical Engineering, Nanjing, China
  • 3Jiangsu Key Laboratory of Spectral Imaging & Intelligent Sense, Nanjing, China
  • 4Nanjing University of Science and Technology, Smart Computational Imaging Research Institute (SCIRI), Nanjing, China
  • 5The University of Hong Kong, Department of Electrical and Electronic Engineering, Pokfulam, Hong Kong, China
  • show less
    DOI: 10.1117/1.AP.4.5.056002 Cite this Article Set citation alerts
    Linpeng Lu, Jiaji Li, Yefeng Shu, Jiasong Sun, Jie Zhou, Edmund Y. Lam, Qian Chen, Chao Zuo. Hybrid brightfield and darkfield transport of intensity approach for high-throughput quantitative phase microscopy[J]. Advanced Photonics, 2022, 4(5): 056002 Copy Citation Text show less
    References

    [1] Y. Shen et al. Recent progress of surface-enhanced Raman spectroscopy for subcellular compartment analysis. Theranostics, 11, 4872-4893(2021).

    [2] M. T. Lin, M. F. Beal. Mitochondrial dysfunction and oxidative stress in neurodegenerative diseases. Nature, 443, 787-795(2006).

    [3] L. A. Austin, B. Kang, M. A. El-Sayed. A new nanotechnology technique for determining drug efficacy using targeted plasmonically enhanced single cell imaging spectroscopy. J. Am. Chem. Soc., 135, 4688-4691(2013).

    [4] E. Glory, R. F. Murphy. Automated subcellular location determination and high-throughput microscopy. Dev. Cell, 12, 7-16(2007).

    [5] V. Starkuviene, R. Pepperkok. The potential of high-content high-throughput microscopy in drug discovery. Br. J. Pharmacol., 152, 62-71(2007).

    [6] N. Meng et al. Large-scale multi-class image-based cell classification with deep learning. IEEE J. Biomed. Health Inform., 23, 2091-2098(2018).

    [7] J. Park et al. Review of bio-optical imaging systems with a high space-bandwidth product. Adv. Photonics, 3, 044001(2021).

    [8] G. Popescu. Quantitative Phase Imaging of Cells and Tissues(2011).

    [9] K. Lee et al. Quantitative phase imaging techniques for the study of cell pathophysiology: from principles to applications. Sensors, 13, 4170-4191(2013).

    [10] J. Mertz. Introduction to Optical Microscopy(2019).

    [11] R. H. Webb. Confocal optical microscopy. Rep. Prog. Phys., 59, 427(1996).

    [12] D. Stephens, V. Allan. Light microscopy techniques for live cell imaging. Science, 300, 82-86(2003).

    [13] Y. Park, C. Depeursinge, G. Popescu. Quantitative phase imaging in biomedicine. Nat. Photonics, 12, 578-589(2018).

    [14] Y. Fan et al. Smart computational light microscopes (SCLMs) of smart computational imaging laboratory (SCILab). PhotoniX, 2, 19(2021).

    [15] M. R. Teague. Deterministic phase retrieval: a Green’s function solution. J. Opt. Soc. Am., 73, 1434-1441(1983).

    [16] M. R. Teague. Image formation in terms of the transport equation. J. Opt. Soc. Am. A, 2, 2019-2026(1985).

    [17] A. Barty et al. Quantitative optical phase microscopy. Opt. Lett., 23, 817-819(1998).

    [18] T. Chakraborty, J. C. Petruccelli. Source diversity for transport of intensity phase imaging. Opt. Express, 25, 9122-9137(2017).

    [19] C. Zuo et al. Transport of intensity equation: a tutorial. Opt. Laser. Eng., 135, 106187(2020).

    [20] E. Barone-Nugent, A. Barty, K. Nugent. Quantitative phase-amplitude microscopy I: optical microscopy. J. Microsc., 206, 194-203(2002).

    [21] L. Lu et al. Accurate quantitative phase imaging by the transport of intensity equation: a mixed-transfer-function approach. Opt. Lett., 46, 1740-1743(2021).

    [22] M. H. Jenkins, J. M. Long, T. K. Gaylord. Multifilter phase imaging with partially coherent light. Appl. Opt., 53, D29-D39(2014).

    [23] C. J. Sheppard. Defocused transfer function for a partially coherent microscope and application to phase retrieval. J. Opt. Soc. Am. A, 21, 828-831(2004).

    [24] C. J. Sheppard. Three-dimensional phase imaging with the intensity transport equation. Appl. Opt., 41, 5951-5955(2002).

    [25] C. Zuo et al. High-resolution transport-of-intensity quantitative phase microscopy with annular illumination. Sci. Rep., 7, 7654(2017).

    [26] J. Li et al. Optimal illumination pattern for transport-of-intensity quantitative phase microscopy. Opt. Express, 26, 27599-27614(2018).

    [27] J. Li et al. High-speed in vitro intensity diffraction tomography. Adv. Photonics, 4, 066004(2019).

    [28] T. Löffler et al. Terahertz dark-field imaging of biomedical tissue. Opt. Express, 9, 616-621(2001).

    [29] S. Berujon, H. Wang, K. Sawhney. X-ray multimodal imaging using a random-phase object. Phys. Rev. A, 86, 063813(2012).

    [30] G. Zheng, C. Kolner, C. Yang. Microscopy refocusing and dark-field imaging by using a simple led array. Opt. Lett., 36, 3987-3989(2011).

    [31] L.-H. Yeh et al. Experimental robustness of fourier ptychography phase retrieval algorithms. Opt. Express, 23, 33214-33240(2015).

    [32] C. J. Sheppard, T. Wilson. Fourier imaging of phase information in scanning and conventional optical microscopes. Philos. Trans. R. Soc. Lond., 295, 513-536(1980).

    [33] G. Zheng, R. Horstmeyer, C. Yang. Wide-field, high-resolution fourier ptychographic microscopy. Nat. Photonics, 7, 739-745(2013).

    [34] L. Tian et al. Multiplexed coded illumination for Fourier ptychography with an led array microscope. Biomed. Opt. Express, 5, 2376-2389(2014).

    [35] J. Sun et al. Resolution-enhanced Fourier ptychographic microscopy based on high-numerical-aperture illuminations. Sci. Rep., 7, 1187(2017).

    [36] X. Chang, L. Bian, J. Zhang. Large-scale phase retrieval. eLight, 4, 4(2021).

    [37] Y. Baek, Y. Park. Intensity-based holographic imaging via space-domain Kramers–Kronig relations. Nat. Photonics, 15, 354-360(2021).

    [38] J. Li et al. Transport of intensity diffraction tomography with non-interferometric synthetic aperture for three-dimensional label-free microscopy. Light: Sci. Appl., 11, 154(2022).

    [39] S. B. Mehta, R. Oldenbourg. Image simulation for biological microscopy: microlith. Biomed. Opt. Express, 5, 1822-1838(2014).

    [40] S. Dong et al. Spectral multiplexing and coherent-state decomposition in fourier ptychographic imaging. Biomed. Opt. Express, 5, 1757-1767(2014).

    [41] V. Mico et al. Synthetic aperture superresolution with multiple off-axis holograms. J. Opt. Soc. Am. A, 23, 3162-3170(2006).

    [42] C. Zheng et al. High spatial and temporal resolution synthetic aperture phase microscopy. Adv. Photonics, 2, 065002(2020).

    [43] D. Dan et al. Super-resolution and optical sectioning integrated structured illumination microscopy. J. Phys. D, 54, 074004(2020).

    [44] V. Elser. Phase retrieval by iterated projections. J. Opt. Soc. Am. A, 20, 40-55(2003).

    [45] J. Sun et al. Single-shot quantitative phase microscopy based on color-multiplexed fourier ptychography. Opt. Lett., 43, 3365-3368(2018).

    [46] V. Mico et al. Superresolved imaging in digital holography by superposition of tilted wavefronts. Appl. Opt., 45, 822-828(2006).

    [47] E. Narimanov. Resolution limit of label-free far-field microscopy. Adv. Photonics, 4, 056003(2019).

    [48] M. M. Alam, M. T. Islam. Machine learning approach of automatic identification and counting of blood cells. Healthcare Technol. Lett., 6, 103-108(2019).

    [49] S. Chowdhury et al. Structured illumination multimodal 3D-resolved quantitative phase and fluorescence sub-diffraction microscopy. Biomed. Opt. Express, 8, 2496-2518(2017).

    [50] Y. Cotte et al. Marker-free phase nanoscopy. Nat. Photonics, 7, 113-117(2013).

    [51] C. Yuan et al. Resolution improvement in digital holography by angular and polarization multiplexing. Appl. Opt., 50, B6-B11(2011).

    [52] P. Gao, G. Pedrini, W. Osten. Structured illumination for resolution enhancement and autofocusing in digital holographic microscopy. Opt. Lett., 38, 1328-1330(2013).

    [53] C. Zuo et al. Wide-field high-resolution 3d microscopy with Fourier ptychographic diffraction tomography. Opt. Laser. Eng., 128, 106003(2020).

    [54] G. Zheng et al. Concept, implementations and applications of fourier ptychography. Nat. Rev. Phys., 3, 207-223(2021).

    [55] L. Tian, L. Waller. Quantitative differential phase contrast imaging in an led array microscope. Opt. Express, 23, 11394-11403(2015).

    [56] J. Sun, C. Zuo, Q. Chen. Iterative optimum frequency combination method for high efficiency phase imaging of absorptive objects based on phase transfer function. Opt. Express, 23, 28031-28049(2015).

    Linpeng Lu, Jiaji Li, Yefeng Shu, Jiasong Sun, Jie Zhou, Edmund Y. Lam, Qian Chen, Chao Zuo. Hybrid brightfield and darkfield transport of intensity approach for high-throughput quantitative phase microscopy[J]. Advanced Photonics, 2022, 4(5): 056002
    Download Citation