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Abstract. Transport of intensity equation (TIE) is a well-established non-interferometric phase retrieval ap-
proach that enables quantitative phase imaging (QPI) by simply measuring intensity images at multiple axially
displaced planes. The advantage of a TIE-based QPI system is its compatibility with partially coherent illu-
mination, which provides speckle-free imaging with resolution beyond the coherent diffraction limit. However,
TIE is generally implemented with a brightfield (BF) configuration, and the maximum achievable imaging
resolution is still limited to the incoherent diffraction limit (twice the coherent diffraction limit). It is desirable that
TIE-related approaches can surpass this limit and achieve high-throughput [high-resolution and wide field of
view (FOV)] QPI. We propose a hybrid BF and darkfield transport of intensity (HBDTI) approach for high-
throughput quantitative phase microscopy. Two through-focus intensity stacks corresponding to BF and
darkfield illuminations are acquired through a low-numerical-aperture (NA) objective lens. The high-resolution
and large-FOV complex amplitude (both quantitative absorption and phase distributions) can then be syn-
thesized based on an iterative phase retrieval algorithm taking the coherence model decomposition into
account. The effectiveness of the proposed method is experimentally verified by the retrieval of the USAF
resolution target and different types of biological cells. The experimental results demonstrate that the half-width
imaging resolution can be improved from 1230 nm to 488 nm with 2.5× expansion across a 4× FOV of
7.19 mm2, corresponding to a 6.25× increase in space-bandwidth product from ∼5 to ∼30.2 megapixels. In
contrast to conventional TIE-based QPI methods where only BF illumination is used, the synthetic aperture
process of HBDTI further incorporates darkfield illuminations to expand the accessible object frequency,
thereby significantly extending the maximum available resolution from 2NA to ∼5NA with a ∼5× promotion of
the coherent diffraction limit. Given its capability for high-throughput QPI, the proposed HBDTI approach is
expected to be adopted in biomedical fields, such as personalized genomics and cancer diagnostics.
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1 Introduction
Organelles are implicated in multiple cellular life activities, and
their metabolism or dysfunction is closely associated with the
development and metastasis of cancers.1 The explorations of
subcellular structures and their abnormal states facilitate insight
into multiple pathological mechanisms, which are expected to
achieve the early diagnosis and effective therapy of diseases.2,3

Hence, noninvasive high-throughput microscopic imaging is of
great significance for attaining the precise detections of subcel-
lular features and high-content quantitative analysis of multiple
events in a large population of cells.4–7

Due to the low absorption or weak scattering of almost pure
phase objects, the unstained cells have difficulty generating suf-
ficient intrinsic contrast.8–10 Though these samples can be visu-
alized by specific dyes or fluorescent labels, the phototoxicity
and photobleaching of exogenous agents could damage the cell
structure and prevent the long-term observation of live cells.11,12

Recently, quantitative phase imaging (QPI) has gained a lot of
attention because of its unique capability to quantify the phase
delay of unlabeled biological specimens in a nondestructive
way.13,14 As a well-established deterministic QPI approach,
the transport of intensity equation (TIE) was originally derived
in the monochromatic coherent illumination situation and
linearized to the phase retrieval problem under the paraxial
approximation.15,16 The phase retrieval methods based on TIE
enable quantitative phase microscopy by simply measuring
intensities at multiple axially displaced planes. TIE has emerged
as a promising QPI tool owing to the advantages of noninter-
ferometric imaging that it is free of phase-unwrapping, and
Köhler illumination compatibility within a brightfield (BF) mi-
croscope.17–19 However, the achievable space-bandwidth product
(SBP) of TIE is fundamentally restricted by the coherent optical
system, exacerbating the tradeoff between image resolution and
field of view (FOV).7

Generally, to increase the imaging system throughput, a low
numerical-aperture (NA) objective is used to acquire a wider
FOV and a larger NA illumination is applied for extending
the maximum achievable resolution beyond the coherent dif-
fraction limit. However, the original TIE is limited to the circular
BF illumination and the phase contrast progressively vanishes
as the illumination NA (NAill) approaches the objective NA
(NAobj).

20,21 Partial coherence expands the maximum obtainable
imaging resolution but aggravates the noise-to-resolution com-
promise since the decrease in illumination coherence tends to
weaken the phase effect.22 Due to the deviation from the coher-
ent linearized model, the TIE method has difficulty retrieving
accurate results with incoherent diffraction-limited resolution
under a circle-shaped BF illumination (NAill ¼ NAobj).

15,16 This
resolution-FOV tradeoff deficiency limits the applications of
TIE-based QPI methods in high-throughput biomedical fields
with high-SBP needs, including cancer diagnostics and drug
development.5,7

To alleviate the above problem, researchers suggested to
explicitly interpreting partial coherence by generalizing the co-
herent contrast transfer function to the weak object transfer
function (WOTF) of a partially coherent system.20,23 As is pre-
dicted by the WOTF analysis, the high-resolution and high-
contrast QPI can be achieved via boosting the TIE phase transfer
function response within the theoretical framework of a trans-
mission cross-coefficient based on the illumination modula-
tion.24,25 In the annular illumination-based TIE (AI-TIE),25,26

the image resolution can be extended to 2NA because of the
robust transfer function response at high frequencies when
the circular illumination aperture is replaced with an annular
one (where the NAill is equal to the NAobj). Nevertheless, the
SBP of AI-TIE is still restricted within the incoherent diffraction
limit. To meet the needs of noninvasive high-throughput imag-
ing, it is hoped that TIE-related methods can exceed this limit to
acquire high-resolution and wide FOV quantitative phase
microscopy.

To the best of our knowledge, TIE is always limited by BF
illumination,15,16,26 and the maximum attainable imaging resolu-
tion is restrained to the incoherent diffraction limit when
matched annular illumination is used.25 Fundamentally, the res-
olution-to-FOV tradeoff of TIE-based QPI methods originates
from the imperfection of the simplified and linearized imaging
model, which ignores partial coherence or introduces strict
assumptions. In general, higher NAill implies a larger spectral
high-frequency cutoff frequency, increasing the ability of the
microscope to record high-frequency details of the specimen.
Specifically, the partial coherence in darkfield (DF) imaging
(NAill > NAobj) extends the maximum achievable imaging res-
olution beyond the incoherent diffraction limit. But the image
formation model of DF imaging transforms into a nonlinear in-
verse problem under the nonparaxial condition, which cannot be
solved by TIE because of the model mismatch. Consequently,
high-throughput TIE-based QPI surpassing the incoherent dif-
fraction-limited resolution has not been reported so far.

In this work, we propose a hybrid BF and DF transport of
intensity approach, termed HBDTI, to obtain high-throughput
QPI with a large SBP. HBDTI uses a low-NA objective to ac-
quire two through-focus intensity stacks corresponding to BF
and DF illuminations with a programmable light-emitting-diode
(LED) array. The forward imaging model of HBDTI is estab-
lished to depict the captured intensity stacks under the
partially coherent illuminations for both BF and DF imaging
precisely and elegantly. Based on an iterative phase retrieval al-
gorithm with coherence model decomposition, the synthetic
aperture process of HBDTI combines BF illumination with
high-angle DF illumination to synthesize a high-resolution
and large-FOV complex amplitude. The effectiveness of HBDTI
is validated by measuring the USAF resolution target and bio-
logical samples both with absorption and phase or pure phase. It
is demonstrated that HBDTI achieves a ∼7.19 mm2 wide FOV
of 488 nm half-width resolution that is ∼2.5× higher than the
incoherent diffraction limit, corresponding to ∼30.2 megapixels
SBP. Experimental results show the capability of HBDTI for
high-SBP QPI to attain accurate detections of subcellular struc-
tures from large groups of cells across multiscales.

2 Methods
The essential idea of computational phase microscopy based on
TIE is to build an accurate forward image formation model
and then implement the phase retrieval algorithm via solving
the corresponding inverse problem.19,27 However, for partially
coherent illumination, the imaging system is nonlinear in either
amplitude or intensity, making phase retrieval complicated.25 To
simplify the image formation process, weakening the effect of
partial coherence and implementing restrictive assumptions,
such as the paraxial approximation and the weak defocusing,
are often applied to linearize the TIE-related phase retrieval
problems. In linearized imaging models, quantitative phase
distributions can be directly reconstructed by Fourier space
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deconvolution in one step by simplifying the model complexity
to decouple the phase solution from the model explicitly.

For diffraction-limited optical imaging systems, higher
NAobj and NAill raise the available angles and expand the acces-
sible object frequency, thereby having a more powerful capabil-
ity to resolve fine specimen details. However, when NAill >
NAobj, the image formation process, from linear BF imaging
(paraxial) to nonlinear DF imaging (nonparaxial), cannot be
solved by the TIE linearized model.28,29 To obtain the imaging
resolution over the incoherent diffraction limit, it is necessary to
break the strict approximations of the original TIE and establish
a more realistic forward physical model. The iterative solutions,
such as Fourier ptychographic microscopy (FPM), can bypass
the analytical modeling of the complex inverse problems and
achieve high-resolution complex amplitude recovery by per-
forming forward imaging models only. Thus, we establish an
HBDTI forward imaging model to describe the measured inten-
sity for both BF and DF imaging in the partially coherent fields
precisely in an elegant way. HBDTI doesn’t require the restric-
tive assumptions like TIE as it considers the partial coherence of
the image formation and utilizes coherence model decomposi-
tion in an iterative process.

In the actual measurement of the intensity image, the dy-
namic range of BF and DF intensity images differs by several
orders of magnitude, and the signal-to-noise ratio (SNR) be-
tween corresponding intensity images is quite different as
well.30,31 Thus, the intensity images are separately captured

under these two illuminations for better SNR and the capture
process takes full advantage of the detector dynamic range,
as illustrated in Fig. 1(b). It is worth mentioning that acquiring
three sets (or more) of data according to the illumination NA can
further effectively enhance the imaging SNR. But considering
that the difference in the dynamic range of DF images with dif-
ferent NAs is much smaller than that in the BF case, the im-
proved SNR performance of this strategy is relatively limited
and increases the complexity of data acquisition. Hence, the pro-
posed HBDTI captures only two sets of through-focus intensity
stacks in BF and DF for the tradeoff of SNR and acquisition
efficiency. The utilization of through-focus in TIE-based QPI is
a traditional approach to introducing the imaginary component
of the optical transfer function for improving phase effect,
thereby the phase information can be transferred into the defo-
cused intensity images.23,32 Based on the above considerations,
we capture two through-focus intensity stacks under BF and DF
illuminations as the inputs of the convergent iterative process for
solving the nonlinear image formation of HBDTI.

To illustrate the advantages of HBDTI from the perspective
of optical principle, we compared the optical system of the tradi-
tional FPM method and that of the proposed HBDTI method, as
shown in Fig. 1. According to Fig. 1(a), FPM requires a variably
illuminated in-focus intensity stack (∼200 frames) with both BF
and DF intensity images,33–36 which are captured in low-SNR
under point illumination. In terms of the matched illumination
condition,37 FPM recovers low-frequency components only
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when the illumination angles are matched to the cut-off angles
allowed by the objective pupil function. In contrast, HBDTI cap-
tures two through-focus intensity stacks (∼100 frames) under BF
and DF illuminations. Using the discrete circle and complemen-
tary-shaped patterns shown in Fig. 1(b) rather than point sources,
HBDTI obtains high-SNR intensities to ensure high quality and
robustness of phase retrieval. Moreover, HBDTI bypasses the
strict requirement of the matched illumination condition via
through-focus scanning, avoiding the missing of low-frequency
components.38 By contrast, HBDTI can achieve high-throughput
quantitative phase microscopy as FPM based on a relatively
small amount of data without the need to consider the matched

illumination condition. In particular, the advantages of HBDTI
compared with different QPI techniques are shown in Sec. 2 in
the Supplementary Material.

We implement the HBDTI recovery algorithm by measuring
two sets of Nz through-focus intensity stacks IcapBF and IcapDF cor-
responding to the BF and DF illuminations [Fig. 2(a)], where z
is the defocus distance and zstep is the step size of the intensity
stack. As shown in step 2 in Fig. 2(b), the captured in-focus
intensity is upsampled for the initialization of the object com-
plex amplitude U. Then, a series of high-resolution defocused
intensity stacks are obtained through numerical propagation
under corresponding LED illumination angles [step 3 in
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Fig. 2(c)], and the calculated low-resolution intensities after the
downsampling of pixel binning can be treated as the input of
the following intensity constraints process. In step 4 [Fig. 2(d)],
the intensity images under different illumination angles are
summed up to form the two intensity stacks IcalBF and IcalDF under
corresponding BF and DF illuminations by coherent mode
decomposition.34,39,40 The measured intensity stacks are divided
by the two stacks as the factor to update the complex amplitude
corresponding to various defocus distances. Inspired by the
strategy of FPM,33 we apply the schemes of synthetic aperture
and multiplexing to the difference map [step 5 in Fig. 2(e)],41–44

and the intensity iterative constraint process is compatible with
high-angle DF illuminations, which significantly expands the
accessible object frequency. The complex amplitude stacks at
different planes are backpropagated to the in-focal object plane
and then these propagated complex amplitude stacks are
synthesized in the Fourier domain to update the object complex
amplitude. Finally, the high-resolution object complex ampli-
tude can be retrieved by repeating step 3 to step 5 until the in-
tensity constraint is satisfied upon convergence. More details are
provided in Sec. 1 in the Supplementary Material.

It is worth mentioning that the HBDTI method proposed
in this paper is different from traditional FPM.33,35,36 In FPM,
it requires a variable-illuminated intensity stack (∼200 frames)
including DF features at the in-focus plane under point illumi-
nation (leading to low-SNR intensity).33,45 Incorporating ptycho-
graphic phase retrieval and coherent synthetic aperture, FPM
allows high-SBP imaging beyond the incoherent diffraction
limit. But in terms of the matched illumination condition,37

FPM recovers low-frequency components only if the illumina-
tion angles match the cutoff angle allowed by the objective pupil
function. Differently, HBDTI captures two through-focus inten-
sity stacks (∼100 frames) under BF and DF illumination with
discrete circular and complementary-shaped patterns for high-
SNR intensity. By merging synthetic aperture and multiplexed
illumination,46 the achievable resolution of HBDTI can exceed
the incoherent diffraction limit for high-SBP imaging. In con-
trast to FPM, as a propagation-based phase recovery method, the
low-frequency phase components of HBDTI can be completely
transferred by z-scanning. Accordingly, HBDTI bypasses the
strict requirement of the matched illumination condition by
through-focus scanning, avoiding the loss of low-frequency
components.38 Therefore, HBDTI can achieve the same high-
SBP reconstruction capability as FPM only based on simpler
operation and a smaller amount of data without the need for
the matched illumination condition.

3 Results and Discussion
We perform the simulation under the 632 nm wavelength LED
illumination with a 5.5 μm pixel size detector and the 4×, 0.1
NA objective to verify the feasibility of the proposed HBDTI
approach. The simulated 9 × 9 LED array of 120 mm below
the sample is shown in Fig. 3(b), with a 6.5 mm distance
between adjacent units. The original low-resolution data were
defined with 64 × 64 pixels resolution, and the recovered 192 ×
192 pixels high-resolution intensity IHR was calculated in iter-
ation number Niter ¼ 10. As illustrated in Fig. 3(c), the details
in the simulated low-resolution intensity image were severely
blurred due to pixel binning. The HBDTI retrieval result in
Fig. 3(d) presents more features than that in Fig. 3(c), such
as the folds of clothes and the sideburns of the cameraman.

Moreover, the high-throughput microscopy capability of
HBDTI was validated by measuring the USAF resolution target,
blood smear, and unlabeled Henrietta Lacks (HeLa) cells (both
quantitative absorption and phase distributions) displayed in
Figs. 4–6. The experiments were implemented on a commercial
microscope (IX83, Olympus, Japan) that was equipped with a
4×, 0.16 NA objective (PLN, Olympus, Japan) utilizing a mo-
torized focus drive with a minimum step size of 10 nm, an
industrial camera (The Imaging Source DMK33UX183, pixel
resolution 5472 × 3648, pixel pitch 2.4 μm) and a program-
mable LED array. Each LED (RS-1515MBAM, Nationstar) ap-
proximately consumes 40 mW of power and provides spatially
coherent quasimonochromatic illumination through three indi-
vidual channels (central wavelength red 632 nm, green 504 nm,
blue 460 nm, and ∼20 nm bandwidth). The LED array is driven
by a self-developed circuit with a field programmable gate array
(FPGA) unit (EP4CE10E22C8N, Intel FPGA, United States) to
provide logical control. The central 9 × 9 LED array with a dis-
tance of 2 mm between adjacent units was placed 12.3 mm
above the sample, offering the largest effective NAill ≈ 0.6
(in the case of BF illumination, NAill ≈ 0.16). In the experi-
ments, in total, 100 intensity frames are acquired within a 3D
intensity set (5472 × 3648 × 100) for 50 axial z-slices under
BF and DF illuminations achieved by a 9 × 9 LED array within
5.5 s acquisition time (55 ms exposure time for each frame
under 4× objective lens). To improve computational efficiency,
we adopt a nonmechanical image stitching algorithm of image
segment recombination to reduce computational cost. Thus, in a
normal laptop without GPU acceleration, our proposed method
takes ∼1 min at ten iterations for 100 intensity images in the
experiments.

To demonstrate the throughput of HBDTI, the 1951 USAF
resolution target (Ready Optics Company, United States) was
captured with a 4×, 0.16 NA objective under illumination λ ¼
632 nm as illustrated in Fig. 4. According to Sec. 3 in the
Supplementary Material, the two sets of Nz ¼ 50 z-axis inten-
sity stacks were measured in zstep ¼ 5 μm under BF and DF il-
luminations. For the measured in-focus intensity shown in
Fig. 4(a2), the highest distinguishable resolution target bars
were element 5 in group 8 [Fig. 4(b1), 1.23 μm half-pitch res-
olution]. Compared with the measured BF intensity and the
quantitative profile in Figs. 4(b1) and 4(c1), all the unit details
of group 8 were resolved in the HBDTI recovery result in higher
contrast shown in Figs. 4(b2) and 4(c2). As depicted in
Fig. 4(b2), the highest resolvable target bars of HBDTI retrieval
result were element 1 in group 10, with a half-pitch resolution of
0.488 μm. The maximum resolution of the experimental result
presented the success of HBDTI to retrieve high-frequency
features consistent with the theoretical half-pitch resolution
of ∼0.452 μm, λ∕ðNAill þ NAobjÞ.47 It was validated that
HBDTI achieved high-resolution imaging of ∼2.5× higher than
the incoherent diffraction limit in the 0.16 NA objective, and the
corresponding SBP was up to 30.2 megapixels with ∼6.25× im-
provement under the 4× FOV of ∼7.19 mm2.

HBDTI quantitatively recovers both phase and amplitude
easily using two sets of defocused intensity stacks, which was
confirmed by measuring the blood smear (Carolina Biological
Supply Company, Burlington, North Carolina, United States)
based on the 4×, 0.16 NA objective (see Fig. 5 and Video 1).
The low-resolution BF in-focus intensity shown in Fig. 5(a) was
combined by the intensity images captured under quasimono-
chromatic illumination at λ ¼ 632 nm (red), 504 nm (green),
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and 460 nm (blue), respectively. Applying the same experimen-
tal and computational parameters as the first experiment,
the blurred edges and missing details of the blood cells in
Fig. 5(b1) were retrieved using the proposed HBDTI method
[Fig. 5(b3)]. Compared with the quantitative distribution in
the measured intensity [Fig. 5(e1)], the profile of the blood cell
was resolved clearly in the HBDTI recovery result both in in-
tensity and phase [Figs. 5(e2) and 5(e3)]. In addition, as shown
in Figs. 5(c1)–5(d2), the sharp red blood cells boundaries and
the clear white blood cells’ internal particles were distinguished

under a large FOV containing ∼80,000 cells [Fig. 5(a)],48 prov-
ing the capability of HBDTI for precise detections of subcellular
structures across the submicron scale to millimeter scale.

Our technique visualizes and provides high-resolution phase
delay quantification of the unstained HeLa cells as the phase
object, which was proved under the 4×, 0.16 NA objective with
illumination λ ¼ 632 nm (see Fig. 6 and Video 2). HeLa cells
were seeded (at an initial density of 300 cells∕cm2) in a 35 mm
glass-bottom Petri dish (No.0 Uncoated Coverslip, 10 mm Glass
Diameter, MatTek Corporation, P35G010C) using DMEM high
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glucose with pyruvate (4.5 g 1:1 glucose, with GlutaMAX
supplement, Gibco, Thermo Fisher Scientific or Roti-CELL
DMEM, Roth) supplemented with 10% fetal bovine serum
and 1× penicillin-streptomycin (both Gibco, Thermo Fisher
Scientific). Cells were incubated at 37°C in a humidified atmos-
phere of 5% carbon dioxide for 8 h to allow attachment. After
that, cells were fixed in phosphate-buffered saline (PBS) buffer
(nm ¼ 1.34) on a microscope slide to preserve the cell morphol-
ogy. According to Sec. 3 in the Supplementary Material, the two
sets of Nz ¼ 50 z-axis intensity stacks were also measured in
zstep ¼ 5 μm under BF and DF illuminations. We adopted a

nonmechanical image stitching algorithm of image segment re-
combination to reduce computational costs.33 As illustrated in
Fig. 6(a), about 4000 HeLa cells with subcellular details were
observed in the HBDTI recovery phase under a large FOV of
∼7.19 mm2. For better visual effects, we normalized the dy-
namic display range of the BF intensity and DF intensity, re-
spectively. As shown in Figs. 6(b1) and 6(b2) and Figs. 6(c1)
and 6(c2), it was confirmed that the intensity images acquired by
HBDTI based on the taking full advantage of the detector dy-
namic range have a high SNR. As shown in Figs. 6(b3) and
6(c3), because of the low spatial coherence of circle-shaped
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BF illumination, TIE retrieved blurred cell boundaries and sub-
cellular details with low contrast. Meanwhile, the missing de-
tails in the TIE retrieval results were accurately recovered
by utilizing the proposed HBDTI approach in a wide FOV
[Figs. 6(b4) and 6(c4)], achieving noninvasive high-throughput
imaging for the high-content analysis of subcellular structure
detections.

4 Conclusion
We have proposed a hybrid BF and DF transport of intensity
approach for high-throughput QPI called HBDTI to solve the
dilemma between the resolution and FOV. HBDTI extends
the achievable imaging resolution beyond the incoherent dif-
fraction limit via solving the nonlinear phase recovery problem
under DF illumination, which is difficult for the linear formula
of TIE. Utilizing two through-focus intensity stacks under BF
and DF illuminations as input, HBDTI solves the nonlinear DF
image formation model based on the coherent mode decompo-
sition, which provides high-resolution recovery exceeding
∼2.5× the incoherent diffraction limit in a large FOV. The suc-
cessful performance of HBDTI has been demonstrated by the
recovery of the USAF absorption target and biological speci-
mens both with absorption and phase or pure phase. The
experimental results have verified that the proposed HBDTI
can achieve a 7.19 mm2 wide FOV with a half-width resolution
of 488 nm, achieving an improvement of 6.25× in SBP from
∼5 megapixels to ∼30.2 megapixels. In the traditional TIE-
based QPI method, whose illumination is limited in BF, its
maximum attainable imaging resolution is at most 2NA. By
combining BF with DF illuminations, the proposed HBDTI
method has the capability to achieve the maximum resolution
of about 5NA with a 5× increase in the coherent diffraction
limit. HBDTI shows the high-throughput ability to record large
FOV images without degradation of the spatial resolution and
has the potential in delineating subcellular structures in large-
scale cell studies applicable for relatively thin objects.
Further efforts, such as the differential collection of BF and
DF images to relieve the data requirement and reduce the cap-
turing time, are needed to promote the high-speed implementa-
tion of HBDTI in large-group live cell analysis.
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