• Journal of Semiconductors
  • Vol. 40, Issue 10, 101303 (2019)
Wenqi Wei1, Qi Feng1, Zihao Wang1、2, Ting Wang1、2, and Jianjun Zhang1、2
Author Affiliations
  • 1Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
  • 2Center of Materials Science and Optoelectronic Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
  • show less
    DOI: 10.1088/1674-4926/40/10/101303 Cite this Article
    Wenqi Wei, Qi Feng, Zihao Wang, Ting Wang, Jianjun Zhang. Perspective: optically-pumped III–V quantum dot microcavity lasers via CMOS compatible patterned Si (001) substrates[J]. Journal of Semiconductors, 2019, 40(10): 101303 Copy Citation Text show less
    References

    [1] M Asghari, A V Krishnamoorthy. Silicon photonics: Energy-efficient communication. Nat Photonics, 5, 268(2011).

    [2] A Rickman. The commercialization of silicon photonics. Nat Photonics, 8, 579(2014).

    [3] A Vahdat, H Liu, X Zhao et al. The emerging optical data center. Optical Fiber Communication Conference, OTuH2(2011).

    [4] J F Bauters, M L Davenport, M J R Heck et al. Silicon on ultra-low-loss waveguide photonic integration platform. Opt Express, 21, 544(2013).

    [5] M J R Heck, J F Bauters, M L Davenport et al. Ultra-low loss waveguide platform and its integration with silicon photonics. Laser Photonics Rev, 8, 667(2014).

    [6] T Yin, R Cohen, M M Morse et al. 31 GHz Ge n–i–p waveguide photodetectors on silicon-on-insulator substrate. Opt Express, 15, 13965(2007).

    [7] L Vivien, A Polzer, D Marris-Morini et al. Zero-bias 40 Gbit/s germanium waveguide photodetector on silicon. Opt Express, 20, 1096(2012).

    [8] G T Reed, G Mashanovich, F Y Gardes et al. Silicon optical modulators. Nat Photonics, 4, 518(2010).

    [9] X Xiao, H Xu, X Li et al. High-speed, low-loss silicon Mach-Zehnder modulators with doping optimization. Opt Express, 21, 4116(2013).

    [10] X Zheng, I Shubin, G Li et al. A tunable 1 × 4 silicon CMOS photonic wavelength multiplexer/demultiplexer for dense optical interconnects. Opt Express, 18, 5151(2010).

    [11] D Liang, J E Bowers. Recent progress in lasers on silicon. Nat Photonics, 4, 511(2010).

    [12] H Rong, A Liu, R Jones et al. An all-silicon Raman laser. Nature, 433, 292(2005).

    [13] R E Camacho-Aguilera, Y Cai, N Patel et al. An electrically pumped germanium laser. Opt Express, 20, 11316(2012).

    [14] J Liu, X Sun, D Pan et al. Tensile-strained, n-type Ge as a gain medium for monolithic laser integration on Si. Opt Express, 15, 11272-11277(2007).

    [15] A Y Liu, J Bowers. Photonic integration with epitaxial III–V on silicon. IEEE J Sel Top in Quantum Electron, 24, 1(2018).

    [16] K Tanabe, K Watanabe, Y Arakawa. III–V/Si hybrid photonic devices by direct fusion bonding. Sci Rep, 2, 349(2012).

    [17] Z Wang, K Van Gasse, V Moskalenko et al. A III–V-on-Si ultra-dense comb laser. Light: Sci Appl, 6, e16260(2017).

    [18] Z Zhou, B Yin, J Michel. On-chip light sources for silicon photonics. Light: Sci Appl, 4, e358(2015).

    [19] Z Wang, A Abbasi, U Dave et al. Novel light source integration approaches for silicon photonics. Laser Photonics Rev, 11, 1700063(2017).

    [20] C W Liu, M Östling, J B Hannon. New materials for post-Si computing. MRS Bulletin, 39, 658(2014).

    [21] J Wu, S Chen, A Seeds et al. Quantum dot optoelectronic devices: lasers, photodetectors and solar cells. J Phys D, 48, 363001(2015).

    [22] M Tang, S Chen, J Wu et al. 1.3-μm InAs/GaAs quantum-dot lasers monolithically grown on Si substrates using InAlAs/GaAs dislocation filter layers. Opt Express, 22, 11528(2014).

    [23] J Wang, H Y Hu, C Deng et al. Defect reduction in GaAs/Si film with InAs quantum-dot dislocation filter grown by metalorganic chemical vapor deposition. Chin Phys B, 24, 028101(2015).

    [24] Q Li, K M Lau. Epitaxial growth of highly mismatched III–V materials on (001) silicon for electronics and optoelectronics. Prog Cryst Growth Charact Mater, 63, 105(2017).

    [25] J Faucher, T Masuda, M L Lee. Initiation strategies for simultaneous control of antiphase domains and stacking faults in GaAs solar cells on Ge. J Vac Sci Technol B, 34, 041203(2016).

    [26] M Liao, S Chen, J S Park et al. III–V quantum-dot lasers monolithically grown on silicon. Semicond Sci Technol, 33, 123002(2018).

    [27] G Brammertz, Y Mols, S Degroote et al. Low-temperature photoluminescence study of thin epitaxial GaAs films on Ge substrates. J Appl Phys, 99, 093514(2006).

    [28] R Alcotte, M Martin, J Moeyaert et al. Epitaxial growth of antiphase boundary free GaAs layer on 300 mm Si (001) substrate by metalorganic chemical vapour deposition with high mobility. Appl Mater, 4, 046101(2016).

    [29] M Akiyama, Y Kawarada, K Kaminishi. Growth of single domain GaAs layer on (100)-oriented Si substrate by MOCVD. Jpn J Appl Phys, 23, L843(1984).

    [30] D J Chadi. Stabilities of single-layer and bilayer steps on Si (001) surfaces. Phys Rev Lett, 59, 1691(1987).

    [31] T Wang, H Liu, A Lee et al. 1.3-μm InAs/GaAs quantum-dot lasers monolithically grown on Si substrates. Opt Express, 19, 11381(2011).

    [32] A Lee, Q Jiang, M Tang et al. Continuous-wave InAs/GaAs quantum-dot laser diodes monolithically grown on Si substrate with low threshold current densities. Opt Express, 20, 22181(2012).

    [33] M Liao, S Chen, S Huo et al. Monolithically integrated electrically pumped continuous-wave III–V quantum dot light sources on silicon. IEEE J Sel Top Quantum Electron, 23, 1(2017).

    [34] S Chen, M Liao, M Tang et al. Electrically pumped continuous-wave 1.3 μm InAs/GaAs quantum dot lasers monolithically grown on on-axis Si (001) substrates. Opt Express, 25, 4632(2017).

    [35] J Norman, M J Kennedy, J Selvidge et al. Electrically pumped continuous wave quantum dot lasers epitaxially grown on patterned, on-axis (001) Si. Opt Express, 25, 3927(2017).

    [36] K Volz, A Beyer, W Witte et al. GaP-nucleation on exact Si (001) substrates for III/V device integration. J Cryst Growth, 315, 37(2011).

    [37] A Y Liu, J Peters, X Huang et al. Electrically pumped continuous-wave 1.3 μm quantum-dot lasers epitaxially grown on on-axis (001) GaP/Si. Opt Lett, 42, 338(2017).

    [38] D Jung, Z Zhang, J Norman et al. Highly reliable low-threshold InAs quantum dot lasers on on-axis (001) Si with 87% injection efficiency. ACS Photonics, 5, 1094(2017).

    [39] J Kwoen, B Jang, J Lee et al. All MBE grown InAs/GaAs quantum dot lasers on on-axis Si (001). Opt Express, 26, 11568(2018).

    [40] V K Yang, M Groenert, C W Leitz et al. Crack formation in GaAs heteroepitaxial films on Si and SiGe virtual substrates. J Appl Phys, 93, 3859(2003).

    [41] W Q Wei, J H Wang, Y Gong et al. C/L-band emission of InAs QDs monolithically grown on Ge substrate. Opt Mater Express, 7, 2955(2017).

    [42] W Q Wei, J H Wang, B Zhang et al. InAs QDs on (111)-faceted Si (001) hollow substrates with strong emission at 1300 nm and 1550 nm. Appl Phys Lett, 113, 053107(2018).

    [43] Q Feng, W Wei, B Zhang et al. O-band and C/L-band III–V quantum dot lasers monolithically grown on Ge and Si substrate. Appl Sci, 9, 385(2019).

    [44] H Liu, T Wang, Q Jiang et al. Long-wavelength InAs/GaAs quantum-dot laser diode monolithically grown on Ge substrate. Nat Photonics, 5, 416(2011).

    [45] P Kaspar, R Brenot, A Le Liepvre et al. Packaged hybrid III–V/silicon SOA. The European Conference on Optical Communication (ECOC), 1(2014).

    [46] N N Ledentsov, A R Kovsh, A E Zhukov et al. High performance quantum dot lasers on GaAs substrates operating in 1.5 μm range. Electron Lett, 39, 1126(2003).

    [47] T Wang, A Lee, F Tutu et al. The effect of growth temperature of GaAs nucleation layer on InAs/GaAs quantum dots monolithically grown on Ge substrates. Appl Phys Lett, 100, 052113(2012).

    [48] A Lee, H Liu, A Seeds. Semiconductor III–V lasers monolithically grown on Si substrates. Semicond Sci Technol, 28, 015027(2012).

    [49] A D Lee, Q Jiang, M Tang et al. InAs/GaAs quantum-dot lasers monolithically grown on Si, Ge, and Ge-on-Si substrates. IEEE J Sel Top Quantum Electron, 19, 1901107(2013).

    [50] A Y Liu, C Zhang, J Norman et al. High performance continuous wave 1.3 μm quantum dot lasers on silicon. Appl Phys Lett, 104, 041104(2014).

    [51] S Chen, W Li, J Wu et al. Electrically pumped continuous-wave III–V quantum dot lasers on silicon. Nat Photonics, 10, 307(2016).

    [52] Y Wan, Q Li, Y Geng et al. InAs/GaAs quantum dots on GaAs-on-V-grooved-Si substrate with high optical quality in the 1.3 μm band. Appl Phys Lett, 107, 081106(2015).

    [53] Y Wan, Q Li, A Y Liu et al. Temperature characteristics of epitaxially grown InAs quantum dot micro-disk lasers on silicon for on-chip light sources. Appl Phys Lett, 109, 011104(2016).

    [54] Q Li, K W Ng, K M Lau. Growing antiphase-domain-free GaAs thin films out of highly ordered planar nanowire arrays on exact (001) silicon. Appl Phys Lett, 106, 072105(2015).

    [55] B Shi, S Zhu, Q Li et al. Continuous-wave optically pumped 1.55 μm InAs/InAlGaAs quantum dot microdisk lasers epitaxially grown on silicon. ACS Photonics, 4, 204(2017).

    [56] B Shi, S Zhu, Q Li et al. 1.55 μm room-temperature lasing from subwavelength quantum-dot microdisks directly grown on (001) Si. Appl Phys Lett, 110, 121109(2017).

    [57] S Zhu, B Shi, Y Wan et al. 1.55 μm band low-threshold, continuous-wave lasing from InAs/InAlGaAs quantum dot microdisks. Opt Lett, 42, 679(2017).

    [58] Y Wan, D Jung, C Shang et al. Low-threshold continuous-wave operation of electrically pumped 1.55 μm InAs quantum dash microring lasers. ACS Photonics, 6, 279(2018).

    [59] B Zhang, W Q Wei, J H Wang et al. 1310 nm InAs quantum-dot microdisk lasers on SOI by hybrid epitaxy. Opt Express, 27, 19348(2019).

    [60] S L McCall, A F J Levi, R E Slusher et al. Whispering-gallery mode microdisk lasers. Appl Phys Lett, 60, 289(1992).

    [61] Y Wan, Q Li, A Y Liu et al. Optically pumped 1.3 μm room-temperature InAs quantum-dot micro-disk lasers directly grown on (001) silicon. Opt Lett, 41, 1664(2016).

    [62] Q Li, Y Wan, A Y Liu et al. 1.3-μm InAs quantum-dot micro-disk lasers on V-groove patterned and unpatterned (001) silicon. Opt Express, 24, 21038(2016).

    [63] Y Wan, J Norman, Q Li et al. 1.3 μm submilliamp threshold quantum dot micro-lasers on Si. Optia, 4, 940(2017).

    [64]

    Wenqi Wei, Qi Feng, Zihao Wang, Ting Wang, Jianjun Zhang. Perspective: optically-pumped III–V quantum dot microcavity lasers via CMOS compatible patterned Si (001) substrates[J]. Journal of Semiconductors, 2019, 40(10): 101303
    Download Citation