• Journal of Semiconductors
  • Vol. 43, Issue 9, 092802 (2022)
Qian Jiang1、2, Junhua Meng3, Yiming Shi1、3, Zhigang Yin1、4, Jingren Chen1、4, Jing Zhang2、*, Jinliang Wu1, and Xingwang Zhang1、4、**
Author Affiliations
  • 1Key Lab of Semiconductor Materials Science, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China
  • 2School of Information Science and Technology, North China University of Technology, Beijing 100144, China
  • 3Faculty of Science, Beijing University of Technology, Beijing 100124, China
  • 4Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
  • show less
    DOI: 10.1088/1674-4926/43/9/092802 Cite this Article
    Qian Jiang, Junhua Meng, Yiming Shi, Zhigang Yin, Jingren Chen, Jing Zhang, Jinliang Wu, Xingwang Zhang. Electrical and optical properties of hydrogen plasma treatedβ-Ga2O3 thin films[J]. Journal of Semiconductors, 2022, 43(9): 092802 Copy Citation Text show less
    References

    [1] M Higashiwaki, K Sasaki, H Murakami et al. Recent progress in Ga2O3 power devices. Semicond Sci Technol, 31, 034001(2016).

    [2] S J Pearton, J Yang, IV P H Cary et al. A review of Ga2O3 materials, processing, and devices. Appl Phys Rev, 5, 011301(2018).

    [3] H W Xue, Q M He, G Z Jian et al. An overview of the ultrawide bandgap Ga2O3 semiconductor-based Schottky barrier diode for power electronics, application. Nanoscale Res Lett, 13, 290(2018).

    [4] X H Chen, F F Ren, S L Gu et al. Review of gallium-oxide-based solar-blind ultraviolet photodetectors. Photo Res, 7, 381(2019).

    [5] D Guo, Q Guo, Z Chen et al. Review of Ga2O3 based optoelectronic devices. Mater Today Phys, 11, 100157(2019).

    [6] R Sharma, M E Law, F Ren et al. Diffusion of dopants and impurities inβ-Ga2O3. J Vac Sci Technol A, 39, 060801(2021).

    [7] J B Varley, J R Weber, A Janotti et al. Oxygen vacancies and donor impurities inβ-Ga2O3. Appl Phys Lett, 97, 142106(2010).

    [8] J B Varley, H Peelaers, A Janotti et al. Hydrogenated cation vacancies in semiconducting oxides. J Phys Condens Matter, 23, 334212(2011).

    [9] T T Huynh, E Chikoidze, C P Irvine et al. Red luminescence in H-dopedβ-Ga2O3. Phy Rev Mater, 4, 085201(2020).

    [10] P D C King, I McKenzie, T D Veal. Observation of shallow-donor muonium in Ga2O3: Evidence for hydrogen-induced conductivity. Appl Phys Lett, 96, 062110(2010).

    [11] W B Fowler, M Stavola, Y Qin et al. Trapping of multiple H atoms at the Ga(1) vacancy inβ-Ga2O3. Appl Phys Lett, 117, 142101(2020).

    [12] Y Qin, M Stavola, W B Fowler et al. Hydrogen centers inβ-Ga2O3: Infrared spectroscopy and density functional theory. ECS J Solid State Sci Technol, 8, Q3103(2019).

    [13] P Weiser, M Stavola, W B Fowler et al. Structure and vibrational properties of the dominant O-H center inβ-Ga2O3. Appl Phys Lett, 112, 232104(2018).

    [14] J R Ritter, J Huso, P T Dickens et al. Compensation and hydrogen passivation of magnesium acceptors inβ-Ga2O3. Appl Phys Lett, 113, 052101(2018).

    [15] M E Ingebrigtsen, A Y Kuznetsov, B G Svensson et al. Impact of proton irradiation on conductivity and deep level defects inβ-Ga2O3. APL Mater, 7, 022510(2019).

    [16] A Y Polyakov, I H Lee, N B Smirnov et al. Hydrogen plasma treatment ofβ-Ga2O3: Changes in electrical properties and deep trap spectra. Appl Phys Lett, 115, 032101(2019).

    [17] J E N Swallow, J B Varley, L A H Jones et al. Transition from electron accumulation to depletion atβ-Ga2O3 surfaces: The role of hydrogen and the charge neutrality level. APL Mater, 7, 022528(2019).

    [18] A Y Polyakov, I H Lee, A Miakonkikh et al. Anisotropy of hydrogen plasma effects in bulk n-typeβ-Ga2O3. J Appl Phys, 127, 175702(2020).

    [19] A Venzie, A Portoff, C Fares et al. OH-Si complex in hydrogenated n-typeβ-Ga2O3:Si. Appl Phys Lett, 119, 062109(2021).

    [20] M M Islam, M O Liedke, D Winarski et al. Chemical manipulation of hydrogen induced high p-type and n-type conductivity in Ga2O3. Sci Rep, 10, 6134(2020).

    [21] S Ahn, F Ren, E Patrick et al. Deuterium incorporation and diffusivity in plasma-exposed bulk Ga2O3. Appl Phys Lett, 109, 242108(2016).

    [22] N H Nickel, K Gellert. Monatomic hydrogen diffusion in β-Ga2O3. Appl Phys Lett, 116, 242102(2020).

    [23] V M Reinertsen, P M Weiser, Y K Frodason et al. Anisotropic and trap-limited diffusion of hydrogen/deuterium in monoclinic gallium oxide single crystals. Appl Phys Lett, 117, 232106(2020).

    [24] Y J Jiao, Q Jiang, J H Meng et al. Growth and characteristics ofβ-Ga2O3 thin films on sapphire (0001) by low pressure chemical vapour deposition. Vacuum, 189, 110253(2021).

    [25] S Rafique, L Han, A T Neal et al. Heteroepitaxy of N-typeβ-Ga2O3 thin films on sapphire substrate by low pressure chemical vapor deposition. Appl Phys Lett, 109, 132103(2016).

    [26] C Wu, D Y Guo, L Y Zhang et al. Systematic investigation of the growth kinetics ofβ-Ga2O3 epilayer by plasma enhanced chemical vapor deposition. Appl Phys Lett, 116, 072102(2020).

    [27] J Tao, H L Lu, Y Gu et al. Investigation of growth characteristics, compositions, and properties of atomic layer deposited amorphous Zn-doped Ga2O3 films. Appl Surf Sci, 476, 733(2019).

    [28] Borg R J, Dienes G J. An introduction to solid state diffusion. Boston: Elsevier, 2012

    [29] S Ahn, F Ren, E Patrick et al. Thermal stability of implanted or plasma exposed deuterium in single crystal Ga2O3. ECS J Solid State Sci, 6, Q3026(2017).

    [30] J B You, X W Zhang, P F Cai et al. Enhancement of field emission of the ZnO film by the reduced work function and the increased conductivity via hydrogen plasma treatment. Appl Phys Lett, 94, 262105(2009).

    [31] S Rafique, L Han, M J Tadjer et al. Homoepitaxial growth ofβ-Ga2O3 thin films by low pressure chemical vapor deposition. Appl Phys Lett, 108, 182105(2016).

    [32] N Y Lee, K J Lee, C Lee et al. Determination of conduction band tail and Fermi energy of heavily Si-doped GaAs by room-temperature photoluminescence. J Appl Phys, 78, 3367(1995).

    [33] P F Cai, J B You, X W Zhang et al. Enhancement of conductivity and transmittance of ZnO films by post hydrogen plasma treatment. J Appl Phys, 105, 083713(2009).

    [34] K Shimamura, E G Víllora, T Ujiie et al. Excitation and photoluminescence of pure and Si-dopedβ-Ga2O3 single crystals. Appl Phys Lett, 92, 201914(2008).

    [35] J B Varley, A Janotti, C Franchini et al. Role of self-trapping in luminescence and p-type conductivity of wide-band-gap oxides. Phys Rev B, 85, 081109(2012).

    [36] Y K Frodason, K M Johansen, L Vines et al. Self-trapped hole and impurity-related broad luminescence inβ-Ga2O3. J Appl Phys, 127, 075701(2020).

    [37] Y Wei, X Li, J Yang et al. Interaction between hydrogen and gallium vacancies inβ-Ga2O3. Sci Rep, 8, 10142(2018).

    Qian Jiang, Junhua Meng, Yiming Shi, Zhigang Yin, Jingren Chen, Jing Zhang, Jinliang Wu, Xingwang Zhang. Electrical and optical properties of hydrogen plasma treatedβ-Ga2O3 thin films[J]. Journal of Semiconductors, 2022, 43(9): 092802
    Download Citation