• Photonics Research
  • Vol. 10, Issue 4, 1107 (2022)
A. Pandey1, Y. Malhotra1, P. Wang1, K. Sun2, X. Liu1, and Z. Mi1、*
Author Affiliations
  • 1Department of Electrical Engineering and Computer Science, University of Michigan, Ann Arbor, Michigan 48109, USA
  • 2Department of Materials Science and Engineering, University of Michigan, Ann Arbor, Michigan 48109, USA
  • show less
    DOI: 10.1364/PRJ.450465 Cite this Article
    A. Pandey, Y. Malhotra, P. Wang, K. Sun, X. Liu, Z. Mi. N-polar InGaN/GaN nanowires: overcoming the efficiency cliff of red-emitting micro-LEDs[J]. Photonics Research, 2022, 10(4): 1107 Copy Citation Text show less
    References
    [1] J.-I. Shim, D.-P. Han, H. Kim, D.-S. Shin, G.-B. Lin, D. S. Meyaard, Q. Shan, J. Cho, E. Fred Schubert, H. Shim. Efficiency droop in AlGaInP and GaInN light-emitting diodes. Appl. Phys. Lett., 100, 111106(2012).
    [2] M. S. Wong, J. A. Kearns, C. Lee, J. M. Smith, C. Lynsky, G. Lheureux, H. Choi, J. Kim, C. Kim, S. Nakamura. Improved performance of AlGaInP red micro-light-emitting diodes with sidewall treatments. Opt. Express, 28, 5787-5793(2020).
    [3] M. Boroditsky, I. Gontijo, M. Jackson, R. Vrijen, E. Yablonovitch, T. Krauss, C.-C. Cheng, A. Scherer, R. Bhat, M. Krames. Surface recombination measurements on III-V candidate materials for nanostructure light-emitting diodes. J. Appl. Phys., 87, 3497-3504(2000).
    [4] F. Olivier, S. Tirano, L. Dupré, B. Aventurier, C. Largeron, F. Templier. Influence of size-reduction on the performances of GaN-based micro-LEDs for display application. J. Lumin., 191, 112-116(2017).
    [5] M. S. Wong, D. Hwang, A. I. Alhassan, C. Lee, R. Ley, S. Nakamura, S. P. DenBaars. High efficiency of III-nitride micro-light-emitting diodes by sidewall passivation using atomic layer deposition. Opt. Express, 26, 21324-21331(2018).
    [6] D. Hwang, A. Mughal, C. D. Pynn, S. Nakamura, S. P. DenBaars. Sustained high external quantum efficiency in ultrasmall blue III–nitride micro-LEDs. Appl. Phys. Express, 10, 032101(2017).
    [7] F. Olivier, A. Daami, C. Licitra, F. Templier. Shockley-Read-Hall and Auger non-radiative recombination in GaN based LEDs: a size effect study. Appl. Phys. Lett., 111, 022104(2017).
    [8] K. A. Bulashevich, S. Y. Karpov. Impact of surface recombination on efficiency of III-nitride light-emitting diodes. Phys. Status Solidi RRL, 10, 480-484(2016).
    [9] E. F. Schubert. Light-Emitting Diodes(2006).
    [10] S. Zhang, J. Zhang, J. Gao, X. Wang, C. Zheng, M. Zhang, X. Wu, L. Xu, J. Ding, Z. Quan. Efficient emission of InGaN-based light-emitting diodes: toward orange and red. Photon. Res., 8, 1671-1675(2020).
    [11] J.-I. Hwang, R. Hashimoto, S. Saito, S. Nunoue. Development of InGaN-based red LED grown on (0001) polar surface. Appl. Phys. Express, 7, 071003(2014).
    [12] D. Iida, K. Niwa, S. Kamiyama, K. Ohkawa. Demonstration of InGaN-based orange LEDs with hybrid multiple-quantum-wells structure. Appl. Phys. Express, 9, 111003(2016).
    [13] D. Iida, Z. Zhuang, P. Kirilenko, M. Velazquez-Rizo, M. A. Najmi, K. Ohkawa. 633-nm InGaN-based red LEDs grown on thick underlying GaN layers with reduced in-plane residual stress. Appl. Phys. Lett., 116, 162101(2020).
    [14] D. Iida, Z. Zhuang, P. Kirilenko, M. Velazquez-Rizo, K. Ohkawa. Demonstration of low forward voltage InGaN-based red LEDs. Appl. Phys. Express, 13, 031001(2020).
    [15] S. S. Pasayat, C. Gupta, M. S. Wong, R. Ley, M. J. Gordon, S. P. DenBaars, S. Nakamura, S. Keller, U. K. Mishra. Demonstration of ultra-small (<10 μm) 632 nm red InGaN micro-LEDs with useful on-wafer external quantum efficiency (>0.2%) for mini-displays. Appl. Phys. Express, 14, 011004(2021).
    [16] A. Dussaigne, P. L. Maitre, H. Haas, J.-C. Pillet, F. Barbier, A. Grenier, N. Michit, A. Jannaud, R. Templier, D. Vaufrey, F. Rol, O. Ledoux, D. Sotta. Full InGaN red (625 nm) micro-LED (10 μm) demonstration on a relaxed pseudo-substrate. Appl. Phys. Express, 14, 092011(2021).
    [17] D. Iida, S. Lu, S. Hirahara, K. Niwa, S. Kamiyama, K. Ohkawa. Enhanced light output power of InGaN-based amber LEDs by strain-compensating AlN/AlGaN barriers. J. Cryst. Growth, 448, 105-108(2016).
    [18] A. Dussaigne, F. Barbier, B. Damilano, S. Chenot, A. Grenier, A. Papon, B. Samuel, B. Ben Bakir, D. Vaufrey, J. Pillet, A. Gasse, O. Ledoux, M. Rozhavskaya, D. Sotta. Full InGaN red light emitting diodes. J. Appl. Phys., 128, 135704(2020).
    [19] Z. Zhuang, D. Iida, K. Ohkawa. Investigation of InGaN-based red/green micro-light-emitting diodes. Opt. Lett., 46, 1912-1915(2021).
    [20] P. Li, A. David, H. Li, H. Zhang, C. Lynsky, Y. Yang, M. Iza, J. S. Speck, S. Nakamura, S. P. DenBaars. High-temperature electroluminescence properties of InGaN red 40 × 40 μm2 micro-light-emitting diodes with a peak external quantum efficiency of 3.2%. Appl. Phys. Lett., 119, 231101(2021).
    [21] Z. Zhuang, D. Iida, M. Velazquez-Rizo, K. Ohkawa. 630-nm red InGaN micro-light-emitting diodes (<20 μm × 20 μm) exceeding 1 mW/mm2 for full-color micro-displays. Photon. Res., 9, 1796-1802(2021).
    [22] P. Li, H. Li, H. Zhang, C. Lynsky, M. Iza, J. S. Speck, S. Nakamura, S. P. DenBaars. Size-independent peak external quantum efficiency (>2%) of InGaN red micro-light-emitting diodes with an emission wavelength over 600 nm. Appl. Phys. Lett., 119, 081102(2021).
    [23] Z. Zhuang, D. Iida, P. Kirilenko, K. Ohkawa. Improved performance of InGaN-based red light-emitting diodes by micro-hole arrays. Opt. Express, 29, 29780-29788(2021).
    [24] K. Streubel, U. Helin, V. Oskarsson, E. Bäcklin, Å. Johansson. High brightness visible (660 nm) resonant-cavity light-emitting diode. IEEE Photon. Technol. Lett., 10, 1685-1687(1998).
    [25] C. Y. Lee, J. Y. Su, C. M. Kuo. 630-nm n-type modulation-doped AlGaInP-AlInP multiquantum-well light-emitting diode. IEEE Photon. Technol. Lett., 18, 25-27(2006).
    [26] R. Windisch, R. Butendeich, S. Illek, S. Kugler, R. Wirth, H. Zull, K. Streubel. 100-lm/W InGaAlP thin-film light-emitting diodes with buried microreflectors. IEEE Photon. Technol. Lett., 19, 774-776(2007).
    [27] C. Rooman, S. D. Jonge, C. Karnutsch, K. Streubel, M. Kuijk, B. Dutta, G. Borghs, P. L. Heremans. Wafer-bonded thin-film surface-roughened light-emitting diodes. Proc. SPIE, 4996, 40-45(2003).
    [28] M. R. Krames, M. Ochiai-Holcomb, G. Höfler, C. Carter-Coman, E. Chen, I.-H. Tan, P. Grillot, N. Gardner, H. Chui, J.-W. Huang. High-power truncated-inverted-pyramid (AlxGa1−x)0.5In0.5P/GaP light-emitting diodes exhibiting >50% external quantum efficiency. Appl. Phys. Lett., 75, 2365-2367(1999).
    [29] X.-L. Wang, N. Kumagai, G.-D. Hao. High-efficiency, high-power AlGaInP thin-film LEDs with micron-sized truncated cones as light-extraction structures. Phys. Status Solidi A, 215, 1700562(2018).
    [30] J.-T. Oh, S.-Y. Lee, Y.-T. Moon, J. H. Moon, S. Park, K. Y. Hong, K. Y. Song, C. Oh, J.-I. Shim, H.-H. Jeong. Light output performance of red AlGaInP-based light emitting diodes with different chip geometries and structures. Opt. Express, 26, 11194-11200(2018).
    [31] C. H. Yen, Y. J. Liu, K. H. Yu, P. L. Lin, T. P. Chen, L. Y. Chen, T. H. Tsai, N. Y. Huang, C. Y. Lee, W. C. Liu. On an AlGaInP-based light-emitting diode with an ITO direct ohmic contact structure. IEEE Electron Device Lett., 30, 359-361(2009).
    [32] R. Wirth, C. Karnutsch, S. Kugler, K. Streubel. High-efficiency resonant-cavity LEDs emitting at 650 nm. IEEE Photon. Technol. Lett., 13, 421-423(2001).
    [33] D. Malacara. Color Vision and Colorimetry: Theory and Applications(2011).
    [34] R. Qiu, H. Lu, D. Chen, R. Zhang, Y. Zheng. Optimization of inductively coupled plasma deep etching of GaN and etching damage analysis. Appl. Surf. Sci., 257, 2700-2706(2011).
    [35] J. Ladroue, A. Meritan, M. Boufnichel, P. Lefaucheux, P. Ranson, R. Dussart. Deep GaN etching by inductively coupled plasma and induced surface defects. J. Vac. Sci. Technol. A, 28, 1226-1233(2010).
    [36] M. Hartensveld, G. Ouin, C. Liu, J. Zhang. Effect of KOH passivation for top-down fabricated InGaN nanowire light emitting diodes. J. Appl. Phys., 126, 183102(2019).
    [37] E. Ertekin, P. A. Greaney, D. Chrzan, T. D. Sands. Equilibrium limits of coherency in strained nanowire heterostructures. J. Appl. Phys., 97, 114325(2005).
    [38] F. Glas. Critical dimensions for the plastic relaxation of strained axial heterostructures in free-standing nanowires. Phys. Rev. B, 74, 121302(2006).
    [39] G. Tourbot, C. Bougerol, F. Glas, L. F. Zagonel, Z. Mahfoud, S. Meuret, P. Gilet, M. Kociak, B. Gayral, B. Daudin. Growth mechanism and properties of InGaN insertions in GaN nanowires. Nanotechnology, 23, 135703(2012).
    [40] G. Tourbot, C. Bougerol, A. Grenier, M. Den Hertog, D. Sam-Giao, D. Cooper, P. Gilet, B. Gayral, B. Daudin. Structural and optical properties of InGaN/GaN nanowire heterostructures grown by PA-MBE. Nanotechnology, 22, 075601(2011).
    [41] K. Kishino, A. Kikuchi, H. Sekiguchi, S. Ishizawa. InGaN/GaN nanocolumn LEDs emitting from blue to red. Proc. SPIE, 6473, 64730T(2007).
    [42] X. Zhang, H. Lourenço-Martins, S. Meuret, M. Kociak, B. Haas, J.-L. Rouvière, P.-H. Jouneau, C. Bougerol, T. Auzelle, D. Jalabert. InGaN nanowires with high InN molar fraction: growth, structural and optical properties. Nanotechnology, 27, 195704(2016).
    [43] S. Deshpande, T. Frost, L. Yan, S. Jahangir, A. Hazari, X. Liu, J. Mirecki-Millunchick, Z. Mi, P. Bhattacharya. Formation and nature of InGaN quantum dots in GaN nanowires. Nano Lett., 15, 1647-1653(2015).
    [44] H. Sekiguchi, K. Kishino, A. Kikuchi. Ti-mask selective-area growth of GaN by RF-plasma-assisted molecular-beam epitaxy for fabricating regularly arranged InGaN/GaN nanocolumns. Appl. Phys. Express, 1, 124002(2008).
    [45] K. Kishino, T. Hoshino, S. Ishizawa, A. Kikuchi. Selective-area growth of GaN nanocolumns on titanium-mask-patterned silicon (111) substrates by RF-plasma-assisted molecular-beam epitaxy. Electron. Lett., 44, 819-821(2008).
    [46] S. D. Hersee, X. Sun, X. Wang. The controlled growth of GaN nanowires. Nano Lett., 6, 1808-1811(2006).
    [47] H. Sekiguchi, K. Kishino, A. Kikuchi. Emission color control from blue to red with nanocolumn diameter of InGaN/GaN nanocolumn arrays grown on same substrate. Appl. Phys. Lett., 96, 231104(2010).
    [48] K. Kishino, A. Yanagihara, K. Ikeda, K. Yamano. Monolithic integration of four-colour InGaN-based nanocolumn LEDs. Electron. Lett., 51, 852-854(2015).
    [49] K. Kishino, K. Nagashima, K. Yamano. Monolithic integration of InGaN-based nanocolumn light-emitting diodes with different emission colors. Appl. Phys. Express, 6, 012101(2012).
    [50] Y.-H. Ra, R. Wang, S. Y. Woo, M. Djavid, S. M. Sadaf, J. Lee, G. A. Botton, Z. Mi. Full-color single nanowire pixels for projection displays. Nano Lett., 16, 4608-4615(2016).
    [51] H. P. T. Nguyen, K. Cui, S. Zhang, S. Fathololoumi, Z. Mi. Full-color InGaN/GaN dot-in-a-wire light emitting diodes on silicon. Nanotechnology, 22, 445202(2011).
    [52] H. P. T. Nguyen, M. Djavid, S. Y. Woo, X. Liu, A. T. Connie, S. Sadaf, Q. Wang, G. A. Botton, I. Shih, Z. Mi. Engineering the carrier dynamics of InGaN nanowire white light-emitting diodes by distributed p-AlGaN electron blocking layers. Sci. Rep., 5, 7744(2015).
    [53] C. Zhao, N. Alfaraj, R. C. Subedi, J. W. Liang, A. A. Alatawi, A. A. Alhamoud, M. Ebaid, M. S. Alias, T. K. Ng, B. S. Ooi. III-nitride nanowires on unconventional substrates: From materials to optoelectronic device applications. Prog. Quantum Electron., 61, 1-31(2018).
    [54] M. Asad, R. Wang, Y.-H. Ra, P. Gavirneni, Z. Mi, W. S. Wong. Optically invariant InGaN nanowire light-emitting diodes on flexible substrates under mechanical manipulation. npj Flexible Electron., 3, 16(2019).
    [55] R. Wang, X. Liu, I. Shih, Z. Mi. High efficiency, full-color AlInGaN quaternary nanowire light emitting diodes with spontaneous core-shell structures on Si. Appl. Phys. Lett., 106, 261104(2015).
    [56] H. P. T. Nguyen, S. Zhang, A. T. Connie, M. G. Kibria, Q. Wang, I. Shih, Z. Mi. Breaking the carrier injection bottleneck of phosphor-free nanowire white light-emitting diodes. Nano Lett., 13, 5437-5442(2013).
    [57] M. Nami, A. Rashidi, M. Monavarian, S. Mishkat-Ul-Masabih, A. K. Rishinaramangalam, S. R. Brueck, D. Feezell. Electrically injected GHz-class GaN/InGaN core–shell nanowire-based μLEDs: carrier dynamics and nanoscale homogeneity. ACS Photon., 6, 1618-1625(2019).
    [58] M. Philip, D. Choudhary, M. Djavid, K. Le, J. Piao, H. Nguyen. High efficiency green/yellow and red InGaN/AlGaN nanowire light-emitting diodes grown by molecular beam epitaxy. J. Sci.: Adv. Mater. Devices, 2, 150-155(2017).
    [59] G. Zhang, Z. Li, X. Yuan, F. Wang, L. Fu, Z. Zhuang, F.-F. Ren, B. Liu, R. Zhang, H. H. Tan. Single nanowire green InGaN/GaN light emitting diodes. Nanotechnology, 27, 435205(2016).
    [60] H. P. T. Nguyen, K. Cui, S. Zhang, M. Djavid, A. Korinek, G. A. Botton, Z. Mi. Controlling electron overflow in phosphor-free InGaN/GaN nanowire white light-emitting diodes. Nano Lett., 12, 1317-1323(2012).
    [61] F. Akyol, D. Nath, S. Krishnamoorthy, P. Park, S. Rajan. Suppression of electron overflow and efficiency droop in N-polar GaN green light emitting diodes. Appl. Phys. Lett., 100, 111118(2012).
    [62] Y.-K. Kuo, S.-H. Horng, S.-H. Yen, M.-C. Tsai, M.-F. Huang. Effect of polarization state on optical properties of blue-violet InGaN light-emitting diodes. Appl. Phys. A, 98, 509-515(2010).
    [63] S.-H. Yen, Y.-K. Kuo. Polarization-dependent optical characteristics of violet InGaN laser diodes. J. Appl. Phys., 103, 103115(2008).
    [64] G. Zeng, T. A. Pham, S. Vanka, G. Liu, C. Song, J. K. Cooper, Z. Mi, T. Ogitsu, F. M. Toma. Development of a photoelectrochemically self-improving Si/GaN photocathode for efficient and durable H 2 production. Nat. Mater., 20, 1130-1135(2021).
    [65] S. Keller, N. Fichtenbaum, M. Furukawa, J. Speck, S. DenBaars, U. Mishra. Growth and characterization of N-polar InGaN/GaN multiquantum wells. Appl. Phys. Lett., 90, 191908(2007).
    [66] D. N. Nath, E. Gür, S. A. Ringel, S. Rajan. Molecular beam epitaxy of N-polar InGaN. Appl. Phys. Lett., 97, 071903(2010).
    [67] P. Wang, D. Wang, B. Wang, S. Mohanty, S. Diez, Y. Wu, Y. Sun, E. Ahmadi, Z. Mi. N-polar ScAlN and HEMTs grown by molecular beam epitaxy. Appl. Phys. Lett., 119, 082101(2021).
    [68] M. H. Crawford. LEDs for solid-state lighting: performance challenges and recent advances. IEEE J. Sel. Top. Quantum Electron., 15, 1028-1040(2009).
    [69] T. Mukai, M. Yamada, S. Nakamura. Characteristics of InGaN-based UV/blue/green/amber/red light-emitting diodes. Jpn. J. Appl. Phys., 38, 3976(1999).
    [70] T. Langer, A. Kruse, F. A. Ketzer, A. Schwiegel, L. Hoffmann, H. Jönen, H. Bremers, U. Rossow, A. Hangleiter. Origin of the “green gap”: Increasing nonradiative recombination in indium-rich GaInN/GaN quantum well structures. Phys. Status Solidi C, 8, 2170-2172(2011).
    [71] M. Rao, D. Kim, S. Mahajan. Compositional dependence of phase separation in InGaN layers. Appl. Phys. Lett., 85, 1961-1963(2004).
    [72] B. Pantha, J. Li, J. Lin, H. Jiang. Evolution of phase separation in In-rich InGaN alloys. Appl. Phys. Lett., 96, 232105(2010).
    [73] I. H. Ho, G. Stringfellow. Solid phase immiscibility in GaInN. Appl. Phys. Lett., 69, 2701-2703(1996).
    [74] T. Takeuchi, S. Sota, M. Katsuragawa, M. Komori, H. Takeuchi, H. Amano, I. Akasaki. Quantum-confined Stark effect due to piezoelectric fields in GaInN strained quantum wells. Jpn. J. Appl. Phys., 36, L382(1997).
    [75] J. Wu. When group-III nitrides go infrared: new properties and perspectives. J. Appl. Phys., 106, 011101(2009).
    [76] A. Trampert, O. Brandt, K. Ploog. Crystal structure of group III nitrides. Semiconductors and Semimetals, 50, 167-192(1997).
    [77] D. A. Browne, E. C. Young, J. R. Lang, C. A. Hurni, J. S. Speck. Indium and impurity incorporation in InGaN films on polar, nonpolar, and semipolar GaN orientations grown by ammonia molecular beam epitaxy. J. Vac. Sci. Technol. A, 30, 041513(2012).
    [78] H. Komaki, T. Nakamura, R. Katayama, K. Onabe, M. Ozeki, T. Ikari. Growth of In-rich InGaN films on sapphire via GaN layer by RF-MBE. J. Cryst. Growth, 301, 473-477(2007).
    [79] N. A. Kaufmann, A. Dussaigne, D. Martin, P. Valvin, T. Guillet, B. Gil, F. Ivaldi, S. Kret, N. Grandjean. Thermal annealing of molecular beam epitaxy-grown InGaN/GaN single quantum well. Semicond. Sci. Technol., 27, 105023(2012).
    [80] C.-C. Chuo, C.-M. Lee, T.-E. Nee, J.-I. Chyi. Effects of thermal annealing on the luminescence and structural properties of high indium-content InGaN/GaN quantum wells. Appl. Phys. Lett., 76, 3902-3904(2000).
    [81] S. Y. Woo, M. Bugnet, H. P. Nguyen, Z. Mi, G. A. Botton. Atomic ordering in InGaN alloys within nanowire heterostructures. Nano Lett., 15, 6413-6418(2015).
    [82] Y.-H. Ra, R. T. Rashid, X. Liu, S. M. Sadaf, K. Mashooq, Z. Mi. An electrically pumped surface-emitting semiconductor green laser. Sci. Adv., 6, eaav7523(2020).
    [83] L. Nicolai, Ž. Gačević, E. Calleja, A. Trampert. Electron tomography of pencil-shaped GaN/(In,Ga)N core-shell nanowires. Nano. Res. Lett., 14, 232(2019).
    [84] Z. A. Gačević, M. Holmes, E. Chernysheva, M. Müller, A. Torres-Pardo, P. Veit, F. Bertram, J. R. Christen, J. M. A. González Calbet, Y. Arakawa. Emission of linearly polarized single photons from quantum dots contained in nonpolar, semipolar, and polar sections of pencil-like InGaN/GaN nanowires. ACS Photon., 4, 657-664(2017).
    [85] G. Stringfellow. The importance of lattice mismatch in the growth of GaxIn1−x P epitaxial crystals. J. Appl. Phys., 43, 3455-3460(1972).
    [86] Y. Kawaguchi, M. Shimizu, M. Yamaguchi, K. Hiramatsu, N. Sawaki, W. Taki, H. Tsuda, N. Kuwano, K. Oki, T. Zheleva. The formation of crystalline defects and crystal growth mechanism in InxGa1−xN/GaN heterostructure grown by metalorganic vapor phase epitaxy. J. Cryst. Growth, 189, 24-28(1998).
    [87] D. Queren, M. Schillgalies, A. Avramescu, G. Brüderl, A. Laubsch, S. Lutgen, U. Strauß. Quality and thermal stability of thin InGaN films. J. Cryst. Growth, 311, 2933-2936(2009).
    [88] C.-C. Chuo, M. N. Chang, F.-M. Pan, C.-M. Lee, J.-I. Chyi. Effect of composition inhomogeneity on the photoluminescence of InGaN/GaN multiple quantum wells upon thermal annealing. Appl. Phys. Lett., 80, 1138-1140(2002).
    [89] C.-C. Chuo, C.-M. Lee, J.-I. Chyi. Interdiffusion of In and Ga in InGaN/GaN multiple quantum wells. Appl. Phys. Lett., 78, 314-316(2001).
    [90] H. Wang, Z. Ji, S. Qu, G. Wang, Y. Jiang, B. Liu, X. Xu, H. Mino. Influence of excitation power and temperature on photoluminescence in InGaN/GaN multiple quantum wells. Opt. Express, 20, 3932-3940(2012).
    [91] S. Marcinkevičius, K. Gelžinytė, Y. Zhao, S. Nakamura, S. DenBaars, J. Speck. Carrier redistribution between different potential sites in semipolar (202¯1) InGaN quantum wells studied by near-field photoluminescence. Appl. Phys. Lett., 105, 111108(2014).
    [92] S. Chichibu, T. Azuhata, T. Sota, S. Nakamura. Spontaneous emission of localized excitons in InGaN single and multiquantum well structures. Appl. Phys. Lett., 69, 4188-4190(1996).
    [93] Y. Robin, M. Pristovsek, H. Amano, F. Oehler, R. Oliver, C. Humphreys. What is red? On the chromaticity of orange-red InGaN/GaN based LEDs. J. Appl. Phys., 124, 183102(2018).
    [94] Y. H. Ra, R. T. Rashid, X. Liu, J. Lee, Z. Mi. Scalable nanowire photonic crystals: Molding the light emission of InGaN. Adv. Funct. Mater., 27, 1702364(2017).
    [95] X. Liu, Y. Wu, Y. Malhotra, Y. Sun, Z. Mi. Micrometer scale InGaN green light emitting diodes with ultra-stable operation. Appl. Phys. Lett., 117, 011104(2020).
    [96] C. Zhao, T. K. Ng, A. Prabaswara, M. Conroy, S. Jahangir, T. Frost, J. O’Connell, J. D. Holmes, P. J. Parbrook, P. Bhattacharya. An enhanced surface passivation effect in InGaN/GaN disk-in-nanowire light emitting diodes for mitigating Shockley–Read–Hall recombination. Nanoscale, 7, 16658-16665(2015).
    [97] W. Liu, D. Zhao, D. Jiang, P. Chen, Z. Liu, J. Zhu, X. Li, F. Liang, J. Liu, L. Zhang. Shockley–Read–Hall recombination and efficiency droop in InGaN/GaN multiple-quantum-well green light-emitting diodes. J. Phys. D, 49, 145104(2016).
    [98] X. Liu, Y. Sun, Y. Malhotra, A. Pandey, Y. Wu, K. Sun, Z. Mi. High efficiency InGaN nanowire tunnel junction green micro-LEDs. Appl. Phys. Lett., 119, 141110(2021).
    [99] X. Liu, K. Mashooq, T. Szkopek, Z. Mi. Improving the efficiency of transverse magnetic polarized emission from AlGaN based LEDs by using nanowire photonic crystal. IEEE Photon. J., 10, 4501211(2018).
    [100] M. G. Kibria, R. Qiao, W. Yang, I. Boukahil, X. Kong, F. A. Chowdhury, M. L. Trudeau, W. Ji, H. Guo, F. Himpsel. Atomic-scale origin of long-term stability and high performance of p-GaN nanowire arrays for photocatalytic overall pure water splitting. Adv. Mater., 28, 8388-8397(2016).
    [101] A. David, M. J. Grundmann. Droop in InGaN light-emitting diodes: a differential carrier lifetime analysis. Appl. Phys. Lett., 96, 103504(2010).
    [102] A. Laubsch, M. Sabathil, W. Bergbauer, M. Strassburg, H. Lugauer, M. Peter, S. Lutgen, N. Linder, K. Streubel, J. Hader. On the origin of IQE-‘droop’ in InGaN LEDs. Phys. Status Solidi C, 6, S913-S916(2009).
    [103] G. Verzellesi, D. Saguatti, M. Meneghini, F. Bertazzi, M. Goano, G. Meneghesso, E. Zanoni. Efficiency droop in InGaN/GaN blue light-emitting diodes: physical mechanisms and remedies. J. Appl. Phys., 114, 071101(2013).
    [104] H. Zhao, G. Liu, R. A. Arif, N. Tansu. Current injection efficiency induced efficiency-droop in InGaN quantum well light-emitting diodes. Solid-State Electron., 54, 1119-1124(2010).
    [105] J. Iveland, L. Martinelli, J. Peretti, J. S. Speck, C. Weisbuch. Direct measurement of Auger electrons emitted from a semiconductor light-emitting diode under electrical injection: identification of the dominant mechanism for efficiency droop. Phys. Rev. Lett., 110, 177406(2013).
    [106] X. Liu, Y. Sun, Y. Malhotra, A. Pandey, P. Wang, Y. Wu, K. Sun, Z. Mi. N-polar InGaN nanowires: breaking the efficiency bottleneck of nano and micro LEDs. Photon. Res., 10, 587-593(2021).
    [107] J. Wang, E. C. Young, W. Y. Ho, B. Bonef, T. Margalith, J. S. Speck. III-nitride blue light-emitting diodes utilizing hybrid tunnel junction with low excess voltage. Semicond. Sci. Technol., 35, 125026(2020).
    A. Pandey, Y. Malhotra, P. Wang, K. Sun, X. Liu, Z. Mi. N-polar InGaN/GaN nanowires: overcoming the efficiency cliff of red-emitting micro-LEDs[J]. Photonics Research, 2022, 10(4): 1107
    Download Citation