• Photonics Research
  • Vol. 9, Issue 4, 521 (2021)
Xue Wang1、2, Junfeng Jiang1、3、*, Shuang Wang1、4、*, Kun Liu1, and Tiegen Liu1、5、*
Author Affiliations
  • 1School of Precision Instrument and Opto-electronics Engineering, Tianjin Optical Fiber Sensing Engineering Center, Institute of Optical Fiber Sensing of Tianjin University, Key Laboratory of Opto-electronics Information Technology, Tianjin University, Tianjin 300072, China
  • 2School of Electrical and Electronic Engineering, Engineering Research Center of Optoelectronic Devices and Communication Technology, Ministry of Education, Tianjin Key Laboratory of Film Electronic and Communication Devices, Tianjin University of Technology, Tianjin 300384, China
  • 3e-mail: jiangjfjxu@tju.edu.cn
  • 4e-mail: shuangwang@tju.edu.cn
  • 5e-mail: tgliu@tju.edu.cn
  • show less
    DOI: 10.1364/PRJ.414121 Cite this Article Set citation alerts
    Xue Wang, Junfeng Jiang, Shuang Wang, Kun Liu, Tiegen Liu. All-silicon dual-cavity fiber-optic pressure sensor with ultralow pressure-temperature cross-sensitivity and wide working temperature range[J]. Photonics Research, 2021, 9(4): 521 Copy Citation Text show less
    References

    [1] S. Sundaram, P. Kellnhofer, Y. Li, J. Zhu, A. Torralba, W. Matusik. Learning the signatures of the human grasp using a scalable tactile glove. Nature, 569, 698-702(2019).

    [2] C. Wang, D. Hwang, Z. Yu, K. Takei, J. Park, T. Chen, B. Ma, A. Javey. User-interactive electronic skin for instantaneous pressure visualization. Nat. Mater., 12, 899-904(2013).

    [3] C. Pang, G. Lee, T. Kim, S. M. Kim, H. N. Kim, S. Ahn, K. Suh. A flexible and highly sensitive strain-gauge sensor using reversible interlocking of nanofibers. Nat. Mater., 11, 795-801(2012).

    [4] J. Shin, Y. Yan, W. Bai, Y. Xue, P. Gamble, L. Tian, I. Kandela, C. R. Haney, W. Spees, Y. Lee, M. Choi, J. Ko, H. Ryu, J. Chang, M. Pezhouh, S. Kang, S. M. Won, K. J. Yu, J. Zhao, Y. K. Lee, M. R. MacEwan, S. Song, Y. Huang, W. Z. Ray, J. A. Rogers. Bioresorbable pressure sensors protected with thermally grown silicon dioxide for the monitoring of chronic diseases and healing processes. Nat. Biomed. Eng., 3, 37-46(2018).

    [5] F. Yang, F. Gyger, L. Thévenaz. Intense Brillouin amplification in gas using hollow-core waveguides. Nat. Photonics, 14, 700-708(2020).

    [6] X. Zhou, Q. Yu, W. Peng. Fiber-optic Fabry–Perot pressure sensor for down-hole application. Opt. Lasers Eng., 121, 289-299(2019).

    [7] S. Gong, W. Schwalb, Y. Wang, Y. Chen, Y. Tang, J. Si, B. Shirinzadeh, W. Cheng. A wearable and highly sensitive pressure sensor with ultrathin gold nanowires. Nat. Commun., 5, 3132(2014).

    [8] L. Shi, Z. Li, M. Chen, Y. Qin, Y. Jiang, L. Wu. Quantum effect-based flexible and transparent pressure sensors with ultrahigh sensitivity and sensing density. Nat. Commun., 11, 3529(2020).

    [9] W. J. Pulliam, P. M. Russler, R. S. Fielder. High-temperature high-bandwidth fiber optic MEMS pressure-sensor technology for turbine-engine component testing. Proc. SPIE, 4578, 229-238(2002).

    [10] W. Ma, Y. Jiang, H. Gao. Miniature all-fiber extrinsic Fabry–Pérot interferometric sensor for high-pressure sensing under high-temperature conditions. Meas. Sci. Technol., 30, 025104(2019).

    [11] H. Zhang, J. Liu, J. Li, P. Jia. Miniature all-silica microbubble-based fiber optic Fabry-Perot pressure sensor with pressure leading-in tube. J. Sens., 2019, 5704614(2019).

    [12] C. Pang, H. Bae, A. Gupta, K. Bryden, M. Yu. MEMS Fabry-Perot sensor interrogated by optical system-on-a-chip for simultaneous pressure and temperature sensing. Opt. Express, 21, 21829-21839(2013).

    [13] W. Li, T. Liang, P. Jia, C. Lei. Fiber-optic Fabry–Perot pressure sensor based on sapphire direct bonding for high-temperature applications. Appl. Opt., 58, 1662-1666(2019).

    [14] X. Wang, S. Wang, J. Jiang, K. Liu, M. Xiao, X. Chen, D. Zhang, T. Liu. An MEMS optical fiber pressure sensor fabricated by Au-Au thermal-compression bonding. Proc. SPIE, 10618, 106180J(2018).

    [15] J. Yin, T. Liu, J. Jiang, K. Liu, S. Wang, Z. Qin, S. Zou. Batch-producible fiber-optic Fabry–Perot sensor for simultaneous pressure and temperature sensing. IEEE Photon. Technol. Lett., 26, 2070-2073(2014).

    [16] X. Jiang, C. Lin, Y. Huang, K. Luo, J. Zhang, Q. Jiang, C. Zhang. Hybrid fiber optic sensor, based on the Fabry–Perot interference, assisted with fluorescent material for the simultaneous measurement of temperature and pressure. Sensors, 19, 1097(2019).

    [17] J. A. Guggenheim, J. Li, T. J. Allen, R. J. Colchester, S. Noimark, O. Ogunlade, I. P. Parkin, I. Papakonstantinou, A. E. Desjardins, E. Z. Zhang. Ultrasensitive plano-concave optical microresonators for ultrasound sensing. Nat. Photonics, 11, 714-719(2017).

    [18] Z. Ran, Y. Rao, W. Liu, X. Liao, K. Chiang. Laser-micromachined Fabry-Perot optical fiber tip sensor for high-resolution temperature-independent measurement of refractive index. Opt. Express, 16, 2252-2263(2008).

    [19] S. P. Timoshenko, S. Woinowsky-Krieger. Theory of Plates and Shells(1959).

    [20] T. Liu, J. Yin, J. Jiang, K. Liu, S. Wang, S. Zou. Differential-pressure-based fiber-optic temperature sensor using Fabry–Perot interferometry. Opt. Lett., 40, 1049-1052(2015).

    [21] F. G. D. Corte, M. E. Montefusco, L. Moretti, I. Rendina, G. Cocorullo. Temperature dependence analysis of the thermo-optic effect in silicon by single and double oscillator models. J. Appl. Phys., 88, 7115-7119(2000).

    [22] G. Liu, Q. Sheng, D. Dam, J. Hua, W. Hou, M. Han. Self-gauged fiber-optic micro-heater with operation temperature above 1000°C. Opt. Lett., 42, 1412-1415(2017).

    [23] X. Wang, S. Wang, J. Jiang, K. Liu, P. Zhang, W. Wu, T. Liu. High-accuracy hybrid fiber-optic Fabry-Pérot sensor based on MEMS for simultaneous gas refractive-index and temperature sensing. Opt. Express, 27, 4204-4215(2019).

    [24] X. Wang, S. Wang, J. Jiang, K. Liu, X. Zhang, M. Xiao, H. Xiao, T. Liu. Non-destructive residual pressure self-measurement method for the sensing chip of optical Fabry-Perot pressure sensor. Opt. Express, 25, 31937-31947(2017).

    [25] X. Guo, J. Zhou, C. Du, X. Wang. Highly sensitive miniature all-silica fiber tip Fabry–Perot pressure sensor. IEEE Photon. Technol. Lett., 31, 689-692(2019).

    [26] Z. Zhang, J. He, B. Du, F. Zhang, Y. Wang. Measurement of high pressure and high temperature using a dual-cavity Fabry–Perot interferometer created in cascade hollow-core fibers. Opt. Lett., 43, 6009-6012(2018).

    [27] S. Liu, Y. Wang, C. Liao, Y. Wang, J. He, C. Fu, K. Yang, Z. Bai, F. Zhang. Nano silica diaphragm in-fiber cavity for gas pressure measurement. Sci. Rep., 7, 787(2017).

    [28] S. Wu, G. Yan, C. Wang, Z. Lian, X. Chen, S. He. FBG incorporated side-open Fabry–Perot cavity for simultaneous gas pressure and temperature measurements. J. Lightwave Technol., 34, 3761-3767(2016).

    [29] Y. Zhang, L. Yuan, X. Lan, A. Kaur, J. Huang. High-temperature fiber-optic Fabry–Perot interferometric pressure sensor fabricated by femtosecond laser. Opt. Lett., 38, 4609-4612(2013).

    CLP Journals

    [1] Jian Li, Xinxin Zhou, Yang Xu, Lijun Qiao, Jianzhong Zhang, Mingjiang Zhang. Slope-assisted Raman distributed optical fiber sensing[J]. Photonics Research, 2022, 10(1): 205

    Xue Wang, Junfeng Jiang, Shuang Wang, Kun Liu, Tiegen Liu. All-silicon dual-cavity fiber-optic pressure sensor with ultralow pressure-temperature cross-sensitivity and wide working temperature range[J]. Photonics Research, 2021, 9(4): 521
    Download Citation