• Photonics Research
  • Vol. 9, Issue 4, 521 (2021)
Xue Wang1、2, Junfeng Jiang1、3、*, Shuang Wang1、4、*, Kun Liu1, and Tiegen Liu1、5、*
Author Affiliations
  • 1School of Precision Instrument and Opto-electronics Engineering, Tianjin Optical Fiber Sensing Engineering Center, Institute of Optical Fiber Sensing of Tianjin University, Key Laboratory of Opto-electronics Information Technology, Tianjin University, Tianjin 300072, China
  • 2School of Electrical and Electronic Engineering, Engineering Research Center of Optoelectronic Devices and Communication Technology, Ministry of Education, Tianjin Key Laboratory of Film Electronic and Communication Devices, Tianjin University of Technology, Tianjin 300384, China
  • 3e-mail: jiangjfjxu@tju.edu.cn
  • 4e-mail: shuangwang@tju.edu.cn
  • 5e-mail: tgliu@tju.edu.cn
  • show less
    DOI: 10.1364/PRJ.414121 Cite this Article Set citation alerts
    Xue Wang, Junfeng Jiang, Shuang Wang, Kun Liu, Tiegen Liu. All-silicon dual-cavity fiber-optic pressure sensor with ultralow pressure-temperature cross-sensitivity and wide working temperature range[J]. Photonics Research, 2021, 9(4): 521 Copy Citation Text show less

    Abstract

    Pressure-temperature cross-sensitivity and its accompanying temperature-related stability is a nerve-wracking obstruction for pressure sensor performance in a wide temperature range. To solve this problem, we propose a novel (to the best of our knowledge) all-silicon dual-cavity optical Fabry–Perot interferometer (FPI) pressure sensor. The all-silicon structure has high intrinsic reflectivity and is able to eliminate the influence of thermal-expansion-mismatch-induced stress and chemical-reaction-induced gas generation, and therefore, in essence, enhances measurement accuracy. From the experiment results, the pressure-temperature cross-sensitivity is reduced to be 5.96 Pa/°C, which presents the lowest pressure-temperature cross-sensitivity among the FPI pressure sensors with the capability of surviving high temperatures up to 700°C thereby opening the way for high-precision pressure monitoring in various harsh and remote environments.
    IR(λ)=I1+I2+I32I2I3cos(ϕ1)2I1I2cos(ϕ2)+2I1I3cos(ϕ1+ϕ2),

    View in Article

    ϕ1=4πn1L1λ,ϕ2=4πn2L2λ,

    View in Article

    ω=3(1ν12)(r2a2)2(PPR)16E1t3(1+ξ),

    View in Article

    PR=PR0TT0,

    View in Article

    ξ=12σr2(1ν12)14.68E1t2,

    View in Article

    σ=(α1α2)E1E2(TTB)(1+ν2)E1+(1ν1)E2,

    View in Article

    ω=sd(PPR)1+ξ.

    View in Article

    h=h0[1+α1(TT0)][112ν1E1(PP0)],

    View in Article

    OPD1=2(hω).

    View in Article

    SP=OPD1P=2(sd1+ξ+12ν1E1h0).

    View in Article

    STc=OPD1T=2[α1h0+sdPR0(1+ξ)T0+sdξ(PT0PR0T)(1+ξ)2(TTB)T0].

    View in Article

    SP=2(sd+12ν1E1h0)=A,STc=2(α1h0+sdPR0T0)=B.

    View in Article

    OPD2=2L20[1+α2(TT0)][112ν2E2(PP0)][n20+β(TT0)],

    View in Article

    OPD2=2L20[112ν2E2(PP0)][n20+(β0+α2n20)(TT0)+κ(TT0)2].

    View in Article

    SPc=OPD2P=2L2012ν2E2[n20+(β0+α2n20)(TT0)+κ(TT0)2].

    View in Article

    OPD2=2L20[n20+(β0+α2n20)(TT0)+κ(TT0)2].

    View in Article

    ST=OPD2T=2L20[β0+α2n20+2κ(TT0)]=C+2D(TT0),

    View in Article

    [ΔOPD1ΔOPD2]=[AB0C][ΔPΔT]+[0D(ΔT)2].

    View in Article

    [ΔOPD1ΔOPD2]=[33.0340.1970122.928][ΔPΔT]+[00.105994×(ΔT)2],

    View in Article

    Xue Wang, Junfeng Jiang, Shuang Wang, Kun Liu, Tiegen Liu. All-silicon dual-cavity fiber-optic pressure sensor with ultralow pressure-temperature cross-sensitivity and wide working temperature range[J]. Photonics Research, 2021, 9(4): 521
    Download Citation