• Journal of Semiconductors
  • Vol. 43, Issue 10, 104102 (2022)
Lijuan Wu*, Shaolian Su*, Xing Chen*, Jinsheng Zeng*, and Haifeng Wu*
Author Affiliations
  • Hunan Provincial Key Laboratory of Flexible Electronic Materials Genome Engineering, School of Physics & Electronic Science, Changsha University of Science & Technology, Changsha 410114, China
  • show less
    DOI: 10.1088/1674-4926/43/10/104102 Cite this Article
    Lijuan Wu, Shaolian Su, Xing Chen, Jinsheng Zeng, Haifeng Wu. A deep trench super-junction LDMOS with double charge compensation layer[J]. Journal of Semiconductors, 2022, 43(10): 104102 Copy Citation Text show less
    (Color online) The structure of (a) DC DT SJ LDMOS and (b) Con. DT SJ LDMOS.
    Fig. 1. (Color online) The structure of (a) DC DT SJ LDMOS and (b) Con. DT SJ LDMOS.
    (Color online) Structure and composition of the DC DT SJ LDMOS.
    Fig. 2. (Color online) Structure and composition of the DC DT SJ LDMOS.
    (Color online) The influence ofNsj at source on BV of Con. DT SJ LDMOS and DC DT SJ LDMOS.
    Fig. 3. (Color online) The influence ofNsj at source on BV of Con. DT SJ LDMOS and DC DT SJ LDMOS.
    (Color online) The influence ofNsj2 at the drain on BV of DC DT SJ LDMOS.
    Fig. 4. (Color online) The influence ofNsj2 at the drain on BV of DC DT SJ LDMOS.
    (Color online) The influence ofNTB at the drain on BV of DC DT SJ LDMOS.
    Fig. 5. (Color online) The influence ofNTB at the drain on BV of DC DT SJ LDMOS.
    (Color online) The influence ofNVB on BV of DC DT SJ LDMOS. (a) Influence ofNVB, max on BV of DC DT SJ LDMOS. (b) Influence ofNVB,min on BV of DC DT SJ LDMOS.
    Fig. 6. (Color online) The influence ofNVB on BV of DC DT SJ LDMOS. (a) Influence ofNVB, max on BV of DC DT SJ LDMOS. (b) Influence ofNVB,min on BV of DC DT SJ LDMOS.
    (Color online) The influence ofNdrift on BV and FOM of Con. DT SJ LDMOS and DC DT SJ LDMOS.
    Fig. 7. (Color online) The influence ofNdrift on BV and FOM of Con. DT SJ LDMOS and DC DT SJ LDMOS.
    (Color online) The distribution of equipotential lines in the off state of (a) Con. DT SJ LDMOS, (b) DC DT SJ LDMOS.
    Fig. 8. (Color online) The distribution of equipotential lines in the off state of (a) Con. DT SJ LDMOS, (b) DC DT SJ LDMOS.
    (Color online) The surface electric field (Y = 0.01μm) and the electric field (Y = 10μm) of the SJ region of the DC DT SJ LDMOS device and Con. DT SJ LDMOS device in the off state.
    Fig. 9. (Color online) The surface electric field (Y = 0.01μm) and the electric field (Y = 10μm) of the SJ region of the DC DT SJ LDMOS device and Con. DT SJ LDMOS device in the off state.
    (Color online) Measured off-state breakdown curve and on-stateId–Vd curves withVg = 15 V in the illustration of the TCCL DT SJ LDMOS and Con. DT SJ LDMOS.
    Fig. 10. (Color online) Measured off-state breakdown curve and on-stateIdVd curves withVg = 15 V in the illustration of the TCCL DT SJ LDMOS and Con. DT SJ LDMOS.
    (Color online) TheRon,sp versus BV for different SJ LDMOSTs.
    Fig. 11. (Color online) TheRon,sp versus BV for different SJ LDMOSTs.
    ParameterSymbolDC DT SJ LDMOSCon. DT SJ LDMOSUnit
    Width of SiO2 trenchWtrench1010μm
    Width of PN pillarWsj22μm
    Thickness of PN pillartsj1717μm
    Thickness of drift regiontdrift22μm
    Thickness of substratetsub3838μm
    Doping concentration of N/P pillar at sourceND1/NA1(Nsj)OptimizedOptimizedcm–3
    Doping concentration of triangular-like SJ N/P pillar at drainND2/NA2(Nsj2)OptimizedOptimizedcm–3
    Doping concentration of inverted triangular charge compensation layerNTBOptimizedcm–3
    Vertical variable doping concentrationNVBOptimizedcm–3
    Doping concentration of N drift regionNdriftOptimizedOptimizedcm–3
    Table 1. Key parameters used in simulation.
    Lijuan Wu, Shaolian Su, Xing Chen, Jinsheng Zeng, Haifeng Wu. A deep trench super-junction LDMOS with double charge compensation layer[J]. Journal of Semiconductors, 2022, 43(10): 104102
    Download Citation